最長遞增子串行,longest increasing subsequence 下面我們簡記為 lis。
排序+lcs演算法 以及 dp演算法就忽略了,這兩個太容易理解了。
假設存在乙個序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出來它的lis長度為5。
下面一步一步試著找出它。
我們定義乙個序列b,然後令 i = 1 to 9 逐個考察這個序列。
此外,我們用乙個變數len來記錄現在最長算到多少了
首先,把d[1]有序地放到b裡,令b[1] = 2,就是說當只有1乙個數字2的時候,長度為1的lis的最小末尾是2。這時len=1
然後,把d[2]有序地放到b裡,令b[1] = 1,就是說長度為1的lis的最小末尾是1,d[1]=2已經沒用了,很容易理解吧。這時len=1
接著,d[3] = 5,d[3]>b[1],所以令b[1+1]=b[2]=d[3]=5,就是說長度為2的lis的最小末尾是5,很容易理解吧。這時候b[1..2] = 1, 5,len=2
再來,d[4] = 3,它正好加在1,5之間,放在1的位置顯然不合適,因為1小於3,長度為1的lis最小末尾應該是1,這樣很容易推知,長度為2的lis最小末尾是3,於是可以把5淘汰掉,這時候b[1..2] = 1, 3,len = 2
繼續,d[5] = 6,它在3後面,因為b[2] = 3, 而6在3後面,於是很容易可以推知b[3] = 6, 這時b[1..3] = 1, 3, 6,還是很容易理解吧? len = 3 了噢。
第6個, d[6] = 4,你看它在3和6之間,於是我們就可以把6替換掉,得到b[3] = 4。b[1..3] = 1, 3, 4, len繼續等於3
第7個, d[7] = 8,它很大,比4大,嗯。於是b[4] = 8。len變成4了
第8個, d[8] = 9,得到b[5] = 9,嗯。len繼續增大,到5了。
最後乙個, d[9] = 7,它在b[3] = 4和b[4] = 8之間,所以我們知道,最新的b[4] =7,b[1..5] = 1, 3, 4, 7, 9,len = 5。
於是我們知道了lis的長度為5。
!!!!! 注意。這個1,3,4,7,9不是lis,它只是儲存的對應長度lis的最小末尾。有了這個末尾,我們就可以乙個乙個地插入資料。雖然最後乙個d[9] = 7更新進去對於這組資料沒有什麼意義,但是如果後面再出現兩個數字 8 和 9,那麼就可以把8更新到d[5], 9更新到d[6],得出lis的長度為6。
然後應該發現一件事情了:在b中插入資料是有序的,而且是進行替換而不需要挪動——也就是說,我們可以使用二分查詢,將每乙個數字的插入時間優化到o(logn)~~~~~於是演算法的時間複雜度就降低到了o(nlogn)~!
#include#include#includeusing namespace std;
int dp[100005],s[100005];
int main()
dp[left]=s[i];
}} printf("%d\n",len);
} return 0;
}
dp之最長遞增子串行模板poj3903
最長遞增子串行,longest increasing subsequence 下面我們簡記為 lis。排序 lcs演算法 以及 dp演算法就忽略了,這兩個太容易理解了。假設存在乙個序列d 1.9 2 1 5 3 6 4 8 9 7,可以看出來它的lis長度為5。下面一步一步試著找出它。我們定義乙個序...
演算法導論之最長遞增子串行
習題15.4 5,15.4 6 長度為n的陣列,尋找最長遞增子串行。要求 1 時間複雜度o n 2 2 時間複雜度o n lg n 解 可以利用公共子串行來解,將陣列a排序得到a 則a與a 的最大公共子串行即為所求,o n n 下面的兩種方法都是直接基於動態規劃。設輸入序列為a 1 n 以a i 作...
動態規劃之最長遞增子串行
基本歸納法 對於ai 1,只要考察其前乙個狀態ai即可完成整個推理過程,它的特點是只要ai確定,則計算ai 1便不需要考察前序狀態a0.ai 1,我們將這一模型稱之為馬爾科夫模型 高階歸納法 相應的,對於ai 1,考察前i個狀態集才可完成整個推理過程,往往稱之為高階馬爾科夫模型 在計算機演算法中,高...