備戰藍橋杯 2016(8)四平方和

2021-10-03 14:19:30 字數 840 閱讀 7144

四平方和定理,又稱為拉格朗日定理:

每個正整數都可以表示為至多4個正整數的平方和。

如果把0包括進去,就正好可以表玉為4個數的平方和。

比如:5=02+02+12+22

7=12+12+12+22

對於乙個給定的正整數,可能存在多種平方和的表示法。

要求你對4個數排序:

0<=a<=b<=c<=d

並對所有的可能表示法按a,b,c,d為聯合主鍵公升序排列,最後輸出第乙個表示法

程式輸入為乙個正整數n(n<5000000)

要求輸出4個非負整數,按從小到大排序,中間用空格分開

例如,輸入:

5則程式應該輸出:

0 0 1 2

再例如,輸入:

12則程式應該輸出:

0 2 2 2

再例如,輸入:

773535

則程式應該輸出:

1 1 267 838

參考**

#include

#include

#include

#include

using

namespace std;

int n;

map<

int,

int>cache;

intmain()

}for

(int a=

0; a*a

4; a++)}

}return0;

}

參考結果

藍橋杯 2016 8 四平方和

四平方和 四平方和定理,又稱為拉格朗日定理 每個正整數都可以表示為至多4個正整數的平方和。如果把0包括進去,就正好可以表示為4個數的平方和。比如 5 0 2 0 2 1 2 2 2 7 1 2 1 2 1 2 2 2 符號表示乘方的意思 對於乙個給定的正整數,可能存在多種平方和的表示法。要求你對4個...

2016 8 四平方和

四平方和定理,又稱為拉格朗日定理 每個正整數都可以表示為至多4個正整數的平方和。如果把0包括進去,就正好可以表示為4個數的平方和。5 0 2 0 2 1 2 2 2 7 1 2 1 2 1 2 2 2 對於乙個給定的正整數,可能存在多種平方和的表示法。要求你對4個數排序 0 a b c d 並對所有...

藍橋杯 四平方和

四平方和 四平方和定理,又稱為拉格朗日定理 每個正整數都可以表示為至多4個正整數的平方和。如果把0包括進去,就正好可以表示為4個數的平方和。比如 5 0 2 0 2 1 2 2 2 7 1 2 1 2 1 2 2 2 符號表示乘方的意思 對於乙個給定的正整數,可能存在多種平方和的表示法。要求你對4個...