首先說說空間(space),這個概念是現代數學的命根子之一,從拓撲空間開始,一步步往上加定義,可以形成很多空間。線形空間其實還是比較初級的,如果在裡面定義了範數,就成了賦範線性空間。賦範線性空間滿足完備性,就成了巴那赫空間;賦範線性空間中定義角度,就有了內積空間,內積空間再滿足完備性,就得到希爾伯特空間。
總之,空間有很多種。你要是去看某種空間的數學定義,大致都是「存在乙個集合,在這個集合上定義某某概念,然後滿足某些性質」,就可以被稱為空間。這未免有點奇怪,為什麼要用「空間」來稱呼一些這樣的集合呢?大家將會看到,其實這是很有道理的。
我們一般人最熟悉的空間,毫無疑問就是我們生活在其中的(按照牛頓的絕對時空觀)的三維空間,從數學上說,這是乙個三維的歐幾里德空間,我們先不管那麼多,先看看我們熟悉的這樣乙個空間有些什麼最基本的特點。仔細想想我們就會知道,這個三維的空間:1. 由很多(實際上是無窮多個)位置點組成;2. 這些點之間存在相對的關係;3. 可以在空間中定義長度、角度;4. 這個空間可以容納運動,這裡我們所說的運動是從乙個點到另乙個點的移動(變換),而不是微積分意義上的「連續」性的運動,
上面的這些性質中,最最關鍵的是第4條。第1、2條只能說是空間的基礎,不算是空間特有的性質,凡是討論數學問題,都得有乙個集合,大多數還得在這個集合上定義一些結構(關係),並不是說有了這些就算是空間。而第3條太特殊,其他的空間不需要具備,更不是關鍵的性質。只有第4條是空間的本質,也就是說,容納運動是空間的本質特徵。
認識到了這些,我們就可以把我們關於三維空間的認識擴充套件到其他的空間。事實上,不管是什麼空間,都必須容納和支援在其中發生的符合規則的運動(變換)。你會發現,在某種空間中往往會存在一種相對應的變換,比如拓撲空間中有拓撲變換,線性空間中有線性變換,仿射空間中有仿射變換,其實這些變換都只不過是對應空間中允許的運動形式而已。
因此只要知道,「空間」是容納運動的乙個物件集合,而變換則規定了對應空間的運動。
下面我們來看看線性空間。線性空間的定義任何一本書上都有,但是既然我們承認線性空間是個空間,那麼有兩個最基本的問題必須首先得到解決,那就是:
空間是乙個物件集合,線性空間也是空間,所以也是乙個物件集合。那麼線性空間是什麼樣的物件的集合?或者說,線性空間中的物件有什麼共同點嗎?
線性代數 零空間矩陣
矩陣a零度空間ax 0解決方案集合。求零空間 矩陣a消除主要變數獲得和自由變數 分配給自由變數值獲得特殊的解決方案 特別的解決方案,以獲得零空間線性組合。如果矩陣例如,下面的 對矩陣a進行高斯消元得到上三角矩陣u。繼續化簡得到最簡矩陣r 因為方程ax 0的右側是零向量,所以僅僅對矩陣a進行消元不會影...
矩陣 Matrices 線性代數
矩陣 在數學中,矩陣 matrix 是乙個按照長方陣列排列的複數或實數集合 矩陣相加 通常的矩陣加法被定義在兩個相同大小的矩陣 矩陣乘法 矩陣和向量的乘法 如圖 m n 的矩陣乘以 n 1 的向量,得到的是 m 1 的向量 矩陣乘法 m n 矩陣乘以 n o 矩陣,變成 m o 矩陣。矩陣乘法的性質...
線性代數 矩陣相乘
線性代數 矩陣相乘1 矩陣相乘 2 include 3using namespace std 45 6int main 7 矩陣c 結果矩陣 13 cout 請輸入矩陣a的行數和列數 14 cin am an 15 cout 請輸入矩陣b的行數和列數 16 cin bm bn 17if an bm ...