01揹包問題:
乙個揹包總容量為v,現在有n個物品,第i個 物品體積為weight[i],價值為value[i],現在往揹包裡面裝東西,怎麼裝能使揹包的內物品價值最大?
我們可以這樣考慮:在物品比較少,揹包容量比較小時怎麼解決?用乙個陣列f[i][j]表示,在只有i個物品,容量為j的情況下揹包問題的最優解,那麼當物品種類變大為i+1時,最優解是什麼?第i+1個物品可以選擇放進揹包或者不放進揹包(這也就是0和1),假設放進揹包(前提是放得下),那麼f[i+1][j]=f[i][j-weight[i+1]+value[i+1];如果不放進揹包,那麼f[i+1][j]=f[i][j]。
由此得出狀態轉移方程:
f[i+1][j]=max(f[i][j],f[i][j-weight[i+1]+value[i+1])
給出一段**:
intf[10][2000];
//全域性變數,自動初始化為0
intweight[10];
intvalue[10];
#define max(x,y) (x)>(y)?(x):(y)
intmain()
for(int
i=1; i<=n; i++)
for(
intj=1; j<=m; j++)
else
f[i][j]=f[i-1][j];
} cout<
} 上面的**用了乙個二維陣列儲存,下面試著用一維陣列儲存
intf[2000];
//全域性變數,自動初始化為0
intweight[10];
intvalue[10];
#define max(x,y) (x)>(y)?(x):(y)
intmain()
for(int
i=1; i<=n; i++)
for(int
j=m; j>=1; j--)
} cout}
揹包問題 01揹包問題
n個物品,總體積是v,每個物品的體積的vi,每個物品的最大價值是wi,在不超過v的體積下求最大價值 eg揹包容積為 5 物品數量為 4 物品的體積分別為 物品的價值分別為 思路定義乙個二位陣列int f new int n 1 v 1 f i j 就表示在1 i個物品中選取體積小於v的情況的最大價值...
揹包問題 01揹包
有n件物品和乙個容量為v的揹包。第i件物品的重量是c i 價值是w i 求解將哪些物品裝入揹包可使價值總和最大。01揹包中的 01 就是一種物品只有1件,你可以選擇放進去揹包即1,也可以選擇不放入揹包中即0。include include using namespace std const int ...
揹包問題(01揹包)
1085 揹包問題 在n件物品取出若干件放在容量為w的揹包裡,每件物品的體積為w1,w2 wn wi為整數 與之相對應的價值為p1,p2 pn pi為整數 求揹包能夠容納的最大價值。input 第1行,2個整數,n和w中間用空格隔開。n為物品的數量,w為揹包的容量。1 n 100,1 w 10000...