主成分分析 (pca) 的時候,會需要矩陣的跡。
對上面的線性方程組,第乙個方程和第二個方程有不同的解,而第2個方程和第3個方程的解完全相同。從這個意義上說,第3個方程是「多餘」的,因為它沒有帶來任何的資訊量,把它去掉,所得的方程組與原來的方程組同解。為了從方程組中去掉多餘的方程,自然就匯出了「矩陣的秩」這一概念。
怎麼手工求矩陣的秩?
為了求矩陣a的秩,我們是通過矩陣初等變換把a化為階梯型矩陣,若該階梯型矩陣有r個非零行,那a的秩rank(a)就等於r。
從物理意義上講,矩陣的秩度量的就是矩陣的行列之間的相關性。如果矩陣的各行或列是線性無關的,矩陣就是滿秩的,也就是秩等於行數。
回到上面線性方程組來說吧,因為線性方程組可以用矩陣描述嘛。秩就表示了有多少個有用的方程了。上面的方程組有3個方程,實際上只有2個是有用的,乙個是多餘的,所以對應的矩陣的秩就是2了。
機器學習基礎 math(10) P值
乙個統計指標,許多科學領域中的研究結果的意義均是由p值來判斷的。它們被用來證明或駁回乙個 零假設 通常假定所測試的效果並不存在。當p值越小,該實驗結果是由純粹的偶然所造成的可能性就越小。由於樣本採集的有限性,他通常只能以小樣本數來進行統計平均,不過在這研究的過程中,他發現小樣本統計平均結果不滿足他一...
機器學習基礎 math(16) 各種乘積
按元素乘法有時候被稱為hadamard 乘積,或者schur 乘積 訊號與系統等學科中的 卷積操作的本質,神經網路中的卷積就是乘累加 訊號處理中的卷積就是加權疊加。具體點,平移 無反褶 疊加。可以看到卷積的重要的物理意義是 乙個函式 如 單位響應 在另乙個函式 如 輸入訊號 上的加權疊加。樓主這種做...
機器學習基礎 math(17) 各種距離
任意滿足測度的 4 個條件的函式都可以被定義為距離。non negativity or separation axiom 非負性或分離公理 identity of indiscernibles 不可分辨的同一性 symmetry 對稱性 subadditivity or inequality 次可加...