歷屆試題 四平方和 窮舉

2021-07-29 18:32:56 字數 821 閱讀 2663

四平方和定理,又稱為拉格朗日定理:

每個正整數都可以表示為至多4個正整數的平方和。

如果把0包括進去,就正好可以表示為4個數的平方和。

比如:5 = 0^2 + 0^2 + 1^2 + 2^2

7 = 1^2 + 1^2 + 1^2 + 2^2

(^符號表示乘方的意思)

對於乙個給定的正整數,可能存在多種平方和的表示法。

要求你對4個數排序:

0 <= a <= b <= c <= d

並對所有的可能表示法按 a,b,c,d 為聯合主鍵公升序排列,最後輸出第乙個表示法

程式輸入為乙個正整數n (n<5000000)

要求輸出4個非負整數,按從小到大排序,中間用空格分開

例如,輸入:

5則程式應該輸出:

0 0 1 2

再例如,輸入:

12則程式應該輸出:

0 2 2 2

再例如,輸入:

773535

則程式應該輸出:

1 1 267 838 窮舉

**:#include#includeusing namespace std;

int main()

{ long long a,b,c,d,n,t;

cin>>n;

t = sqrt(n);

for (a=0;a<=t;a++)

for (b=a;b<=t;b++)

for (c=b;c<=t;c++)

for (d=c;d<=t;d++)

{ if (a*a+b*b+c*c+d*d==n)

{ cout<

藍橋杯試題 四平方和

原題 四平方和 四平方和定理,又稱為拉格朗日定理 每個正整數都可以表示為至多 4 個正整數的平方和。如果把 0 包括進去,就正好可以表示為 4 個數的平方和。比如 5 0 2 0 2 1 2 2 2 7 1 2 1 2 1 2 2 2 符號表示乘方的意思 對於乙個給定的正整數,可能存在多種平方和的表...

四平方和(列舉)

1.問題描述 四平方和 四平方和定理,又稱為拉格朗日定理 每個正整數都可以表示為至多4個正整數的平方和。如果把0包括進去,就正好可以表示為4個數的平方和。比如 5 0 2 0 2 1 2 2 2 7 1 2 1 2 1 2 2 2 符號表示乘方的意思 對於乙個給定的正整數,可能存在多種平方和的表示法...

8 四平方和

題目描述 四平方和定理,又稱為拉格朗日定理 每個正整數都可以表示為至多4個正整數的平方和。如果把0包括進去,就正好可以表示為4個數的平方和。比如 5 0 2 0 2 1 2 2 2 7 1 2 1 2 1 2 2 2 符號表示乘方的意思 對於乙個給定的正整數,可能存在多種平方和的表示法。要求你對4個...