我理解的條件概率

2022-07-18 21:57:20 字數 1346 閱讀 8034

概率是指事件發生的可能性。

首先描述乙個場景,a,b,c,d四個玩家,每人3張牌,前面2張都公開,後面一張不公開。

剛開始時,讓你估算下其他3個玩家拿到3張a的可能性。它等於4/c(54,3)。

這個概率對每個人,任何時刻都是一樣的,他就是乙個客觀的資料,從實用的角度來說,它沒有意義。這對大家都是一樣的。 什麼用都沒有。這個概率對誰都是一樣的,沒有人會因為這個數字跟牌或者棄牌。

但是隨著牌局的進展,一切就不同了。比如你看到b手裡拿到2張a,而其它人手裡還沒有a,那麼b拿到3個a的概率是多少呢?這個概率:在拿到手2張a的情況下,拿到第三個a的概率,我們稱之為條件概率。

p(拿到3個a | 拿到2個a) = 2/(54-8)=1/23

條件概率更有實際的意義。因為隨著牌局的進展,每個人的目標是不一樣的。如果有人手上的牌是同色的,那麼可以算下3張牌同色的概率;或者某人手裡的牌是連牌的概率;每個人目標不同,它的條件概率就不一樣。如果你足夠快速的計算,你就可以算出,比如:

對手a:拿到3個a的概率x

對手b:拿到同色牌的概率y

對手c:拿到連牌的概率z

自己:3張同數字的概率w。

如果自己的概率比較高,那麼你可以繼續跟下去。如果概率低很多,那麼你盡可以放棄了。所以條件概率比原生意義的概率更有意義。

條件概率的還支撐了乙個很重要的理論,那就是貝葉斯推論。先說下場景,假設你和a是多年的牌友,一共打過1000次賭局。你發現a有乙個很重要的習慣,那就如果底牌很滿意,他會不自覺的笑一下;如果底牌很差,他會不自覺的皺眉頭。由於你是個很細心的人,你詳細的記錄了以下資料:

微笑皺眉頭

無表情總計

滿意的牌

20020

80300

不滿意的牌

80500

120700

很顯然,你的朋友不太會假裝,雖然他努力這麼做。比如拿到好牌了,卻假裝不懂聲色,或者假裝是爛牌;或者拿到爛牌了,卻虛張聲勢,故意微笑一下。

那麼問題是,今天你們又在一起打牌了。在關鍵的一輪裡,他看了底牌,並且他微笑了一下,請問,他對牌滿意的概率是多少?不滿意的概率又是多少?

p(對現在的牌滿意 | 微笑) =p(對牌滿意,微笑) /(p(滿意,微笑)+p(不滿意,微笑))

p(對牌滿意,微笑) = p(微笑|滿意)*p(滿意)=(200/300)*(300/1000)=0.2

p(對牌不滿意,微笑) = p(微笑|不滿意)*p(不滿意)=(80/700)*(700/1000)=0.08

因此:p(對現在的牌滿意 | 微笑)=0.2/(0.2+0.08)=71%

因此,你可以的醋結論,你的朋友對牌滿意的概率是71%。本著大家都是聰明的想法,你能猜出什麼樣的牌會讓他滿意,於是你就能判斷自己是否能大過他。從而決定是放棄還是繼續跟進

理解條件概率

分享一下我老師大神的人工智慧教程!零基礎,通俗易懂!網上看了一些解釋,覺得這個比較形象易懂 在同乙個樣本空間 中的事件或者子集 a 與 b,如果隨機從 中選出的乙個元素屬於 b,那麼下乙個隨機選擇的元素屬於 a 的概率就定義為在 b 的前提下 a 的條件概率。條件概率 示例 就是事件 a 在另外乙個...

聯合概率 邊際概率 條件概率

一時忘了聯合概率 邊際概率 條件概率是怎麼回事,回頭看看。某離散分布 聯合概率 邊際概率 條件概率的關係 其中,pr x x,y y 為 xy的聯合概率 pr x x 為 x的邊際概率 pr x x y y 為 x基於y的條件概率 pr y y 為 y的邊際概率 從上式子中可以看到 pr x x,y...

聯合概率 邊緣概率 條件概率

設a,b是兩個事件,且p b 0,則在事件b發生的條件下,事件a發生的條件概率 conditional probability 為 p a b p ab p b 分析 一般說到條件概率這一概念的時候,事件a和事件b都是同一實驗下的不同的結果集合,事件a和事件b一般是有交集的,若沒有交集 互斥 則條件...