卡爾曼濾波主要根據系統狀態方程,通過系統輸入輸出作為觀測資料,來不斷迭代修正預估的邏輯,實現對系統狀態的最優估計。理**式比較複雜,需要花時間去體會理解,想細研究的朋友建議直接去找一篇相關**學習(其實研究之後一天就又忘了)。
卡爾曼基本迭代公式:
基於上面的5個等式,我們可以搭建出卡爾曼濾波的基本模型(為了簡單快速實現直接使用matlab fucntion),如下圖:
試一下效果怎麼樣。給定濾波器引數如下:
結論:卡爾曼濾波幾乎沒有延遲,能濾除高頻干擾,效果比低通濾波更好一些。
卡爾曼 卡爾曼濾波 1
今天主要介紹一下卡爾曼濾波器,所謂卡爾曼濾波器其實是一種最優化遞迴數字處理演算法 optimal recursive data processing algorithm 卡爾曼濾波器應用 既然我們有了測量儀器,這些測量儀器可以目標給出準確測量值。還需要卡爾曼濾波器進行估計嗎?下面解釋一下為什麼需要卡...
卡爾曼 基礎卡爾曼濾波
卡爾曼濾波器是一種基礎 定位演算法。原理非常簡單易懂。核心過程可以用乙個圖說明 本質上就是這兩個狀態過程的迭代,來逐步的準確定位。更新 更具感測器獲取到比較準確的位置資訊後來更新當前的 問位置,也就是糾正 的錯誤。你可能要問為什麼有感測器的資料了還要進行更新?因為在現實世界中感測器是存在很多雜訊干擾...
卡爾曼濾波
卡爾曼濾波演算法 首先引入乙個離散控制過程的系統,用乙個線性隨機微分方程來描述 x k a x k 1 b u k w k 系統的測量值 z k h x k v k x k 是k時刻的系統狀態,u k 是k時刻對系統的控制量。a和b是系統引數,對於多模型系統,他們為矩陣。z k 是k時刻的測量值,h...