閒談
在學習卡爾曼濾波器之前,首先看看為什麼叫「卡爾曼」。跟其他著名的理論(例如傅利葉變換,泰勒級數等等)一樣,卡爾曼也是乙個人的名字,而跟他們不同的是,他是個現代人!
簡單來說,卡爾曼濾波器是乙個「optimal recursive data processing algorithm(最優化自回歸資料處理演算法)」。對於解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機械人導航,控制,感測器資料融合甚至在軍事方面的雷達系統以及飛彈追蹤等等。近年來更被應用於計算機影象處理,例如頭臉識別,影象分割,影象邊緣檢測等等
介紹卡爾曼濾波器(introduction to the kalman filter )
為了可以更加容易的理解卡爾曼濾波器,這裡會應用形象的描述方法來講解,而不是像大多數參考書那樣羅列一大堆的數學公式和數學符號。但是,他的5條公式是其核心內容。結合現代的計算機,其實卡爾曼的程式相當的簡單,只要你理解了他的那5條公式.
假設我們要研究的物件是乙個房間的溫度。根據你的經驗判斷,這個房間的溫度是恆定的,也就是下一分鐘的溫度等於現在這一分鐘的溫度(假設我們用一分鐘來做時間單位)。假設你對你的經驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白雜訊(white gaussian noise),也就是這些偏差跟前後時間是沒有關係的而且符合高斯分配(gaussian distribution)。另外,我們在房間裡放乙個溫度計,但是這個溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白雜訊。
好了,現在對於某一分鐘我們有兩個有關於該房間的溫度值:你根據經驗的**值(系統的**值)和溫度計的值(測量值)。下面我們要用這兩個值結合他們各自的雜訊來估算出房間的實際溫度值。
假如我們要估算k時刻的是實際溫度值。首先你要根據k-1時刻的溫度值,來**k時刻的溫度。因為你相信溫度是恆定的,所以你會得到k時刻的溫度**值是跟k-1時刻一樣的,假設是23度,同時該值的高斯雜訊的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優溫度值的偏差是3,你對自己**的不確定度是4度,他們平方相加再開方,就是5)。然後,你從溫度計那裡得到了k時刻的溫度值,假設是25度,同時該值的偏差是4度。
由於我們用於估算k時刻的實際溫度有兩個溫度值,分別是23度和25度,究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的covariance(協方差)來判斷。因為kg^2=5^2/(5^2+4^2),所以kg=0.78,我們可以估算出k時刻的實際溫度值是:23+0.78*(25-23)=24.56度。可以看出,因為溫度計的covariance比較小(比較相信溫度計),所以估算出的最優溫度值偏向溫度計的值。
卡爾曼 卡爾曼濾波 1
今天主要介紹一下卡爾曼濾波器,所謂卡爾曼濾波器其實是一種最優化遞迴數字處理演算法 optimal recursive data processing algorithm 卡爾曼濾波器應用 既然我們有了測量儀器,這些測量儀器可以目標給出準確測量值。還需要卡爾曼濾波器進行估計嗎?下面解釋一下為什麼需要卡...
卡爾曼 基礎卡爾曼濾波
卡爾曼濾波器是一種基礎 定位演算法。原理非常簡單易懂。核心過程可以用乙個圖說明 本質上就是這兩個狀態過程的迭代,來逐步的準確定位。更新 更具感測器獲取到比較準確的位置資訊後來更新當前的 問位置,也就是糾正 的錯誤。你可能要問為什麼有感測器的資料了還要進行更新?因為在現實世界中感測器是存在很多雜訊干擾...
卡爾曼濾波
卡爾曼濾波演算法 首先引入乙個離散控制過程的系統,用乙個線性隨機微分方程來描述 x k a x k 1 b u k w k 系統的測量值 z k h x k v k x k 是k時刻的系統狀態,u k 是k時刻對系統的控制量。a和b是系統引數,對於多模型系統,他們為矩陣。z k 是k時刻的測量值,h...