劍指offer 矩形覆蓋

2021-10-19 06:33:33 字數 541 閱讀 3879

題目

我們可以用21的小矩形橫著或者豎著去覆蓋更大的矩形。請問用n個21的小矩形無重疊地覆蓋乙個2*n的大矩形,總共有多少種方法?

知識點

斐波那契數列,遞迴

思路

方一、找規律,發現第2項及之後和斐波那契數列一樣,所以可以直接用陣列將前兩項相加得到本項。

方二、遞迴實現:

當n=1時,只能豎著覆蓋,為1;

當n=2時,既可以橫著覆蓋,也可以豎著覆蓋,為2;

當n=n時,只需要考慮n-1和n-2如何覆蓋即可。

**

public

class

solution

return array[target];}

}

public

class

solution

else

}}

劍指offer 矩形覆蓋

我們可以用2 1的小矩形橫著或者豎著去覆蓋更大的矩形。請問用n個2 1的小矩形無重疊地覆蓋乙個2 n的大矩形,總共有多少種方法?觀察題目中的矩形,2 n的,是個長條形。本來腦中想象的是複雜的華容道,但是既然只是簡單的長條形,那麼依然逆向分析。既然是長條形的,那麼從後向前,最後乙個矩形2 2的,只有兩...

劍指Offer 矩形覆蓋

題目描述 我們可以用2 1的小矩形橫著或者豎著去覆蓋更大的矩形。請問用n個2 1的小矩形無重疊地覆蓋乙個2 n的大矩形,總共有多少種方法?思路 這個也是跳青蛙的變形 但是要自己找出當前的鋪法和以前鋪法的關係 注意到 情況一 當前塊的話可以由上一塊加上當前這一塊的豎著放 情況二 或者是 上上一塊加上兩...

劍指offer 矩形覆蓋

1 題目描述 我們可以用2 1的小矩形橫著或者豎著去覆蓋更大的矩形。請問用n個2 1的小矩形無重疊地覆蓋乙個2 n的大矩形,總共有多少種方法?2 思路 遞迴呼叫 若不存在小矩形,則返回0 若只存在乙個小矩形,則只有一種方法,返回1 若存在兩個小矩形,則存在兩種方法,返回2 若小矩形的數量大於2,則若...