又是被sls和杰哥吊打的一天
sls:t4莫反70可做啊,考場上想什麼t3
t1已知少考慮多個環交於一點情況(lrq:那你考慮了什麼情況?)
t2不會,sls和杰哥都會
t3不會
t4不會(sls:這邊建議您直接放棄這道毒瘤題呢)
腦子不夠用,構造題一題不會。
唯一簡單的t1又少考慮一種情況,跟csp2020t1犯了同樣的錯誤,思維還是不夠縝密,尤其是做這種分類討論題。
好吧,我t1少考慮了億點點情況,要將這些分類討論合併一下
還是不知道jz有沒有版權,自己總結一下t1t2
t1首先判斷一筆畫問題不成立的情況(有1個或大於2個度數為奇數的點)
對於度數全為偶數的圖,將度數最大的點與它連的邊刪去,若剩下的圖有環,為no,否則為yes
另一種情況,將兩個度數為奇數的點分別刪去判斷(同上),有乙個成立就輸出yes,否則是no
t2構造方法:
f [i
][1]
=2i−
1(
2<=i
<=n
),f[
i][j
]=f[
i−1]
[j]+
f[i]
[j−1
]−f[
j+i−
n][n
−1](
當j+i
−n
>0時
才減
)f[i][1]=2^(2<=i<=n),f[i][j]=f[i-1][j]+f[i][j-1]-f[j+i-n][n-1](當j+i-n>0時才減)
f[i][1
]=2i
−1(2
<=i
<=n
),f[
i][j
]=f[
i−1]
[j]+
f[i]
[j−1
]−f[
j+i−
n][n
−1](
當j+i
−n>0時
才減)
NOIP提高 通訊
tarjan縮點 互相到達的兩個點,就是在同乙個強連通分量裡面的點的邊權都沒有用了。那麼明顯可以用tarjan來縮點。需要串上n個點 那麼這個東西很像乙個最小生成樹,可惜不是。那麼我們另闢蹊徑。既然要保證每個點都在的出的圖中,那麼最優的方案就只有n 1條邊,那麼每個除了1號點只需要有一條邊練過來就好...
NOIP提高 錢倉
比賽的時候看錯題目了,還以為是這個錢可以向兩邊流,結果,樣例怎麼不對啊!原來錢,只能向後流tat 貪心 那麼直接貪心就好了。每個錢為0的點,因為是單方向流動的,所以肯定是最近的那個點流過來的。所以先找出乙個合法的初始節點,滿足每個零都會被前面的點填滿。維護每乙個非零的點的左邊乙個非零的點,其實每次暴...
NOIP提高組 矩陣
在麥克雷的面前出現了乙個有n m個格仔的矩陣,每個格仔用 或 表示,表示這個格仔可以放東西,則表示這個格仔不能放東西。現在他拿著一條1 2大小的木棒,好奇的他想知道對於一些子矩陣,有多少種放木棒的方案。因為棍子是1 2的,所以很容易就能發現,兩個被分割的塊,除了跨越兩個塊擺放木棍的方案數會對答案有影...