著名的快速排序演算法裡有乙個經典的劃分過程:我們通常採用某種方法取乙個元素作為主元,通過交換,把比主元小的元素放到它的左邊,比主元大的元素放到它的右邊。 給定劃分後的 n 個互不相同的正整數的排列,請問有多少個元素可能是劃分前選取的主元?
例如給定 n=5
n = 5
n=5, 排列是1、3、2、4、5。則:
1 的左邊沒有元素,右邊的元素都比它大,所以它可能是主元;
儘管 3 的左邊元素都比它小,但其右邊的 2 比它小,所以它不能是主元;
儘管 2 的右邊元素都比它大,但其左邊的 3 比它大,所以它不能是主元;
類似原因,4 和 5 都可能是主元。
因此,有 3 個元素可能是主元。
輸入格式:
輸入在第 1 行中給出乙個正整數 n(≤105); 第 2 行是空格分隔的 n 個不同的正整數,每個數不超過 109。
輸出格式:
在第 1 行中輸出有可能是主元的元素個數;在第 2 行中按遞增順序輸出這些元素,其間以 1 個空格分隔,行首尾不得有多餘空格。
輸入樣例:
5
1 3 2 4 5
輸出樣例:
3
1 4 5
快排中主元的位置就是最終位置,所以複製乙份資料並排序,以便對比看是否是最終位置,如果未排序裡那個數是從左到這個位置上最大的數以及是最終位置的話就是主元
#include
#include
#include
using
namespace std;
intmain()
sort
(b, b + n)
;int maxnum =0;
for(
int i =
0; i < n; i++
) cout << c.
size()
<< endl;
if(c.
size()
==0)int i ;
for(i =
0; i < c.
size()
-1; i++
) cout << c[i]
<<
" ";
cout << c[i]
;return0;
}
1045 快速排序 25
著名的快速排序演算法裡有乙個經典的劃分過程 我們通常採用某種方法取乙個元素作為主元,通過交換,把比主元小的元素放到它的左邊,比主元大的元素放到它的右邊。給定劃分後的n個互不相同的正整數的排列,請問有多少個元素可能是劃分前選取的主元?例如給定n 5,排列是1 3 2 4 5。則 1的左邊沒有元素,右邊...
1045 快速排序 25
著名的快速排序演算法裡有乙個經典的劃分過程 我們通常採用某種方法取乙個元素作為主元,通過交換,把比主元小的元素放到它的左邊,比主元大的元素放到它的右邊。給定劃分後的n個互不相同的正整數的排列,請問有多少個元素可能是劃分前選取的主元?例如給定n 5,排列是1 3 2 4 5。則 1的左邊沒有元素,右邊...
1045 快速排序 25
時間限制 200 ms 記憶體限制 65536 kb 長度限制 8000 b 判題程式 standard 作者 cao,peng 著名的快速排序演算法裡有乙個經典的劃分過程 我們通常採用某種方法取乙個元素作為主元,通過交換,把比主元小的元素放到它的左邊,比主元大的元素放到它的右邊。給定劃分後的n個互...