矩陣與行列式的區別

2021-09-19 23:05:56 字數 353 閱讀 5979

1.矩陣是乙個**,行數和列數可以不一樣;而行列式是乙個數,且行數必須等於列數。只有方陣才可以定義它的行列式,而對於長方陣不能定義它的行列式。

2. 兩個矩陣相等是指對應元素都相等;兩個行列式相等不要求對應元素都相等,甚至階數也可以不一樣,只要運算代數和的結果一樣就行了。

3.兩矩陣相加是將各對應元素相加;兩行列式相加,是將運算結果相加,在特殊情況下(比如有行或列相同),只能將一行(或列)的元素相加,其餘元素照寫。

4.數乘矩陣是指該數乘以矩陣的每乙個元素;而數乘行列式,只能用此數乘行列式的某一行或列,提公因數也如此。

5.矩陣經初等變換,其秩不變;行列式經初等變換,其值可能改變:換法變換要變號,倍法變換差倍數;消法變換不改變。

行列式與矩陣的區別

1 行列式的本質是線性變換的放大率,而矩陣的本質就是個數表。2 行列式行數 列數,矩陣不一定 行數列數都等於n的叫n階方陣 二者的表示方式亦有區別。3 行列式與矩陣的運算明顯不同 1 相等 只有兩個同型的矩陣才有可能相等,並且要求對應元素都相等 而兩個行列式相等不要求其對應元素都相等,甚至階數還可以...

行列式與矩陣

說明 本公式只針對在二維或三通道的計算機視覺中所遇到的問題,不代表傳統意義上數學知識點範圍。矩陣的行列式,稱之為det,是基於矩陣所包含的行列資料計算得到的標量。本質上是乙個數。高階行列式計算比較複雜。對於三通道未進行壓縮的影象而言,描述該影象的矩陣所計算的det甚至手動計算是幾乎不可能的,故在這裡...

矩陣與行列式

矩陣是用於記錄某一資訊的一組數,比如記錄圖中的各個點之間是否相通,參見線性代數書本。行列式的本質是乙個數,只不過我們通過行列式,能夠很清楚的知道係數,因為行列式一般用於表示線性方程的求解。並且只存在方陣行列式,不是方陣的行列式在數學中沒有定義。矩陣用括號來表示 行比較少時是小括號,行多時看著是中括號...