順序表應用7 最大子段和之分治遞迴法

2021-09-18 08:16:45 字數 1641 閱讀 3226

time limit: 10 ms memory limit: 400 kib

submit

statistic

problem description

給定n(1<=n<=50000)個整數(可能為負數)組成的序列a[1],a[2],a[3],…,a[n],求該序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。當所給的整數均為負數時定義子段和為0,依此定義,所求的最優值為: max,1<=i<=j<=n。 例如,當(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)時,最大子段和為20。

注意:本題目要求用分治遞迴法求解,除了需要輸出最大子段和的值之外,還需要輸出求得該結果所需的遞迴呼叫總次數。

#include

int count=0;

int main()

int fib(int n)

input

第一行輸入整數n(1<=n<=50000),表示整數序列中的資料元素個數;

第二行依次輸入n個整數,對應順序表中存放的每個資料元素值。

output

一行輸出兩個整數,之間以空格間隔輸出:

第乙個整數為所求的最大子段和;

第二個整數為用分治遞迴法求解最大子段和時,遞迴函式被呼叫的總次數。

sample input

6

-2 11 -4 13 -5 -2

sample output

20 11
hint

source

終於做對了媽呀。用c++的輸入輸出就超時,有沒有大佬解答一下呀???

思路:計算出一整部分元素和的最大值,然後再計算中間元素左邊的元素和的最大值,再計算右邊元素和的最大值,然後進行比較取最大值。計算左右兩邊和的最大值時跟上述步驟相同,直到僅剩乙個元素為止

#include using namespace std;

int cnt;

int getmax(int s, int l, int r)

else

}int leftmax, rightmax, max;

int mid;

mid = (l+r)/2;

leftmax = getmax(s,l,mid);

rightmax = getmax(s,mid+1,r);

int suml, sumr, sum;

int i;

sum = 0;

suml = 0;

for(i = mid; i >= l; i--)

}sum = 0;

sumr = 0;

for(i = mid+1; i <= r; i++)

}max = suml + sumr;

max = max(max,leftmax);

max = max(max,rightmax);

return max;

}int main()

sum = getmax(s,0,n-1);

printf("%d %d\n",sum, cnt);

return 0;

}

分治演算法 順序表應用7 最大子段和之分治遞迴法

problem description 給定n 1 n 50000 個整數 可能為負數 組成的序列a 1 a 2 a 3 a n 求該序列如a i a i 1 a j 的子段和的最大值。當所給的整數均為負數時定義子段和為0,依此定義,所求的最優值為 max,1 i j n。例如,當 a 1 a 2 ...

順序表應用7 最大子段和之分治遞迴法

time limit 10ms memory limit 400kb problem description 給定n 1 n 50000 個整數 可能為負數 組成的序列a 1 a 2 a 3 a n 求該序列如a i a i 1 a j 的子段和的最大值。當所給的整數均為負數時定義子段和為0,依此定...

順序表應用7 最大子段和之分治遞迴法

problem description 給定n 1 n 50000 個整數 可能為負數 組成的序列a 1 a 2 a 3 a n 求該序列如a i a i 1 a j 的子段和的最大值。當所給的整數均為負數時定義子段和為0,依此定義,所求的最優值為 max,1 i j n。例如,當 a 1 a 2 ...