1、條件概率公式
1)定義:設a,b是兩個事件,且p(b)>0,則在事件b發生的條件下,事件a發生的條件概率(conditional probability)為:
p(a|b)=p(ab)/p(b)
2)乘法公式
p(a|b)=p(a)p(b)
b、由條件概率公式得:
p(ab)=p(a|b)p(b)=p(b|a)p(a)
上式推廣,對於任何正整數n≥2,當p(a1a2...an-1) > 0 時,有:
p(a1a2...an-1an)=p(a1)p(a2|a1)p(a3|a1a2)...p(an|a1a2...an-1)
2、全概率公式
1)定義:如果事件組b1,b2,.... 滿足
設 b1,b2,...是樣本空間ω的乙個劃分,a為任一事件,則:
2)全概率公式的意義在於,當直接計算p(a)較為困難,而p(bi),p(a|bi) (i=1,2,...)的計算較為簡單時,可以利用全概率公式計算p(a)。思想就是,將事件a分解成幾個小事件,通過求小事件的概率,然後相加從而求得事件a的概率,而將事件a進行分割的時候,不是直接對a進行分割,而是先找到樣本空間ω的乙個個劃分b1,b2,...bn,這樣事件a就被事件ab1,ab2,...abn分解成了n部分,即a=ab1+ab2+...+abn, 每一bi發生都可能導致a發生相應的概率是p(a|bi),由乘法公式得
p(a)=p(ab1)+p(ab2)+....+p(abn)=p(a|b1)p(b1)+p(a|b2)p(b2)+...+p(a|bn)p(pbn)
3)例項:某車間用甲、乙、丙三颱工具機進行生產,各台工具機次品率分別為5%,4%,2%,它們各自的產品分別佔總量的25%,35%,40%,將它們的產品混在一起,求任取乙個產品是次品的概率。
解:設..... p(a)=25%*5%+4%*35%+2%*40%=0.0345
3、貝葉斯公式
與全概率公式解決的問題相反,貝葉斯公式是建立在條件概率的基礎上尋找事件發生的原因(即大事件a已經發生的條件下,分割中的小事件bi的概率),設b1,b2,...是樣本空間ω的乙個劃分,則對任一事件a(p(a)>0),有
上式即為貝葉斯公式(bayes formula),bi 常被視為導致試驗結果a發生的」原因「,p(bi)(i=1,2,...)表示各種原因發生的可能性大小,故稱先驗概率;p(bi|a)(i=1,2...)則反映當試驗產生了結果a之後,再對各種原因概率的新認識,故稱後驗概率。
例項:發報臺分別以概率0.6和0.4發出訊號「∪」和「—」。由於通訊系統受到干擾,當發出訊號「∪」時,收報臺分別以概率0.8和0.2受到訊號「∪」和「—」;又當發出訊號「—」時,收報臺分別以概率0.9和0.1收到訊號「—」和「∪」。求當收報臺收到訊號「∪」時,發報臺確係發出「∪」的概率。
解:設...., p(b1|a)= (0.6*0.8)/(0.6*0.8+0.4*0.1)=0.923
條件概率,全概率,貝葉斯公式
王式安的這道題的做法,題幹 在先取出的零件是一等品的條件下,之前選箱子的概率p a 和p b 就是1 2和1 2。這裡錯誤了!正確答案選c 按照他的思想計算公式,1 3 1 1 3 0 1 3 在先選出的球是紅球的條件下,排除第三種情況各佔1 2 顯然錯誤的。錯誤原因就在於忽略了當摸出紅球的時候,他...
條件概率 全概率 貝葉斯公式
參考 ref 設a,b是兩個事件,且p b 0,則在事件b發生的條件下,事件a發生的條件概率 conditional probability 為 p a b p ab p b 分析 一般說到條件概率這一概念的時候,事件a和事件b都是同一實驗下的不同的結果集合,事件a和事件b一般是有交集的,若沒有交集...
條件概率,全概率公式,貝葉斯公式,樸素貝葉斯
本文摘自黃清龍等編著的 概率論與數理統計 我們以乙個例子來闡述樸素貝葉斯思想。例子來自樸素貝葉斯分類 原理 假設根據以前的經驗獲得如下的資料。然後給你乙個新的資料 身高 高 體重 中 鞋碼 中 請問這個人是男還是女?判斷是男還是女,是分類問題,記男為c1,女為c2。身高體重鞋碼是樣本x的屬性,記x1...