POJ 1830 開關問題 高斯消元

2021-09-07 23:09:37 字數 470 閱讀 9761

題意:有n個相同的開關,每個開關都與某些開關有著聯絡,每當你開啟或者關閉某個開關的時候,其他的與此開關相關聯的開關也會相應地發生變化,即這些相聯絡的開關的狀態如果原來為開就變為關,如果為關就變為開。你的目標是經過若干次開關操作後使得最後n個開關達到乙個特定的狀態。對於任意乙個開關,最多只能進行一次開關操作。你的任務是,計算有多少種可以達到指定狀態的方法。(不計開關操作的順序)

思路:建立矩陣。求解。無解的情況是有乙個方程的值為1,但是係數全部為0;若有解,設係數和值全部為0的方程為x,則答案為2^x。

int s[n],t[n];

int a[n][n],n;

void build()

}void gauss()

j++;

}for(i=1;i<=n;i++) if(a[i][n+1])

}pr(1<<(n-j+1));

}int main()

}

POJ 1830 開關問題 高斯消元

開關問題 time limit 1000ms memory limit 30000k total submissions 3390 accepted 1143 description 有n個相同的開關,每個開關都與某些開關有著聯絡,每當你開啟或者關閉某個開關的時候,其他的與此開關相關聯的開關也會相應...

poj 1830 開關問題 高斯消元

題意是 給一些開關的初始狀態 0 或1 在給出終止狀態,在給出相關的變化規則,規則 x 變化 則 y 也變 x y 讀入。輸出有多少種開關的撥動情況,使初始狀態變成終止狀態。此問題 很容易轉化成 高斯消元 解 異或方程組。t 方程組的自由化的個數,則結果就是 2 t include include ...

poj 1830 開關問題(高斯消元)

終止狀態是從初始狀態由開關組合影響而形成的,那麼就有乙個等式使得初始狀態可以到達終止狀態,例如a,b,c三個開關 e a xa mp a a xb mp a b xc map a c s a e b xa mp b a xb mp b b xc map b c s b e c xa mp c a x...