順序表應用7 最大子段和之分治遞迴法 Rwen

2021-09-29 20:48:26 字數 1120 閱讀 4835

time limit: 10 ms memory limit: 400 kib

給定n(1<=n<=50000)個整數(可能為負數)組成的序列a[1],a[2],a[3],…,a[n],求該序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。當所給的整數均為負數時定義子段和為0,依此定義,所求的最優值為: max,1<=i<=j<=n。 例如,當(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)時,最大子段和為20。

注意:本題目要求用分治遞迴法求解,除了需要輸出最大子段和的值之外,還需要輸出求得該結果所需的遞迴呼叫總次數。

#include

int count=0;

int main()

int fib(int n)

第一行輸入整數n(1<=n<=50000),表示整數序列中的資料元素個數;

第二行依次輸入n個整數,對應順序表中存放的每個資料元素值。

一行輸出兩個整數,之間以空格間隔輸出:

第乙個整數為所求的最大子段和;

第二個整數為用分治遞迴法求解最大子段和時,遞迴函式被呼叫的總次數。

6-2 11 -4 13 -5 -2

20 11

#include

using

namespace std;

int once=0;

int sum;

int num[

50000];

intmaxlist

(int l,

int r)

else

s0=0;

for(

int i=mild+

1;i<=r;i++

) sum=s1+s2;

sum=

max(sum,left)

; sum=

max(sum,right);}

return sum;

}int

main()

sum=

maxlist(0

,n-1);

printf

("%d %d\n"

,sum,once)

;,}

分治演算法 順序表應用7 最大子段和之分治遞迴法

problem description 給定n 1 n 50000 個整數 可能為負數 組成的序列a 1 a 2 a 3 a n 求該序列如a i a i 1 a j 的子段和的最大值。當所給的整數均為負數時定義子段和為0,依此定義,所求的最優值為 max,1 i j n。例如,當 a 1 a 2 ...

順序表應用7 最大子段和之分治遞迴法

time limit 10ms memory limit 400kb problem description 給定n 1 n 50000 個整數 可能為負數 組成的序列a 1 a 2 a 3 a n 求該序列如a i a i 1 a j 的子段和的最大值。當所給的整數均為負數時定義子段和為0,依此定...

順序表應用7 最大子段和之分治遞迴法

problem description 給定n 1 n 50000 個整數 可能為負數 組成的序列a 1 a 2 a 3 a n 求該序列如a i a i 1 a j 的子段和的最大值。當所給的整數均為負數時定義子段和為0,依此定義,所求的最優值為 max,1 i j n。例如,當 a 1 a 2 ...