leetcode 60 第k個排列

2021-09-29 00:26:59 字數 816 閱讀 4167

給出集合 [1,2,3,…,n],其所有元素共有 n! 種排列。

按大小順序列出所有排列情況,並一一標記,當 n = 3 時, 所有排列如下:

"123"

"132"

"213"

"231"

"312"

"321"

給定 n 和 k,返回第 k 個排列。

說明:給定 n 的範圍是 [1, 9]。

給定 k 的範圍是[1,  n!]。

示例 1:

輸入: n = 3, k = 3

輸出: "213"

示例 2:

輸入: n = 4, k = 9

輸出: "2314"

class solution:

def getpermutation(self, n: int, k: int) -> str:

k -= 1

res =

lis = [str(i) for i in range(1,n+1)]

factorial = 1

for i in range(1,n):

factorial *= i

factor = n-1

while factor >= 0:

index = k // factorial

lis.pop(index)

k %= factorial

if factor != 0:

factorial //= factor

factor -= 1

return ''.join(res)

LeetCode60 第k個排列

給出集合 1,2,3,n 其所有元素共有 n 種排列。按大小順序列出所有排列情況,並一一標記,當 n 3 時,所有排列如下 123 132 213 231 312 321 給定 n 和 k,返回第 k 個排列。說明 示例 1 輸入 n 3,k 3輸出 213 示例 2 輸入 n 4,k 9輸出 23...

LeetCode 60 第k個排列

給出集合 1,2,3,n 其所有元素共有 n 種排列。按大小順序列出所有排列情況,並一一標記,當 n 3 時,所有排列如下 123 132 213 231 312 321 給定 n 和 k,返回第 k 個排列。說明 給定 n 的範圍是 1,9 給定 k 的範圍是 1,n 示例 1 輸入 n 3,k ...

LeetCode 60 第k個排列

題目鏈結 題解 逆康托展開。考慮康托展開的過程。k v i n i 其中v i 表示在a i 1.n 中比a i 小的數字的個數 也即未出現的數字中它排名第幾 從0開始 那麼我們在逆康托展開的時候,就可以通過直接除 n i 得到每個數字的v i 的值。然後通過給已經出現的數字打tag。剩下的問題就轉...