無人駕駛汽車路徑規劃概述
無人駕駛汽車路徑規劃是指在一定的環境模型基礎上,給定無人駕駛汽車起始點和目標點後,按照效能指標規劃出一條無碰撞、能安全到達目標點的有效路徑。
路徑規劃主要包含兩個步驟:建立包含障礙區域與自由區域的環境地圖,以及在環境地圖中選擇合適的路徑搜尋演算法,快速實時地搜尋可行駛路徑。路徑規劃結果對車輛行駛起著導航作用。它引導車輛從當前位置行駛到達目標位置。
環境地圖表示方法
根據不同的表示形式,環境地圖表示方法主要分為度量地圖表示法,拓撲地圖表示法等。
1、度量地圖表示法
度量地圖表示法採用座標系中的格柵是否被障礙物佔據的方式來描述環境特徵,分為幾何表示法和空間分解法。
幾何表示法利用包括點、線、多邊形在內的幾何元素來表示環境資訊。相比於其他環境地圖表示方式,幾何特徵地圖更為緊湊,有利於位置估計和目標識別;缺點是環境幾何特徵提取困難。幾何特徵地圖適合於在環境已知的室內環境提取一些簡單的幾何特徵,而室外環境下的幾何特徵較難提取。常用的幾何地圖有voronoi圖、概率路圖等。
幾何表示法
停車場voronoi圖
空間分解法是把環境分解為類似於格柵的區域性單元,根據他們是否被障礙物佔據來進行狀態描述。如果格柵單元被障礙物佔據,則為障礙格柵;反之,則為自由格柵。空間分解法通常採用基於格柵大小的均勻分解法和遞階分解法。均勻分解法中的格柵大小均勻分布,佔據格柵用數值表示。均勻分解法能夠快速直觀地融合感測器資訊;但是,均勻分解法採用相同大小格柵會導致儲存空間巨大,大規模環境下路徑規劃計算複雜度高。為了克服均勻分解法中儲存空間巨大的問題,遞階分解法把環境空間分解為大小不同的矩形區域,從而減少模型所占用的記憶體空間。
均勻分解法
四叉樹分解法
均勻格柵地圖是度量地圖路徑規劃中最常用的。它把環境分解為一系列離散的格柵節點。所有格柵節點大小統一,均勻分布。格柵用值佔據方式來表示障礙物資訊。例如使用最簡單的二值表示方法,1表示障礙格柵,不可通行;0表示自由格柵。
當用均勻格柵地圖表示環境資訊後,格柵節點之間只有建立一定的連線關係才能保證能從起點搜尋到目標點的有效路徑。
八連線方式
2、拓撲地圖表示法
拓撲地圖模型選用節點表示道路上的特定位置,並用節點與節點間的關係來表示道路間聯絡。這種地圖表示方法具有結構簡單、儲存方便、全域性連貫性好、規劃效率高、魯棒性強等特點,適合於大規模環境下的道路規劃,但它包含資訊量少,需借助其他感測器來對道路環境做進一步描述。
路徑規劃演算法
目前路徑規劃方法分類大致如下:
路徑規劃圖
比較常用的路徑規劃演算法為基於取樣的路徑規劃演算法以及基於搜尋路徑規劃演算法。
① 基於取樣的路徑規劃演算法
基於取樣的路徑規劃演算法很早便開始用於車輛的路徑規劃中,比較常見的基於取樣的規劃演算法有概率圖演算法(probabilistic road map, prm)和快速隨機擴充套件樹演算法(rapidly-exploring random tree,rrt)。
概率圖演算法是在規劃空間內隨機選取n個節點,之後連線各節點,並去除於障礙物接觸的連線,由此得到乙個可行路徑。顯然,當取樣點太少,或者分布不合理時,prm演算法是不完備的,但可以增加取樣點使該演算法達到完備,所以prm是概率完備但不是最優的。
prm演算法
快速隨機擴充套件樹最初主要用於解決含有運動學約束的路徑規劃問題。由於rrt在狀態空間中採用隨機取樣確定擴充套件節點,不需要預處理,搜尋速度快。因此這種演算法作為一種快速搜尋演算法在路徑規劃問題中獲得廣泛應用。
rrt演算法
② 基於搜尋的路徑規劃演算法
基於搜尋的路徑規劃演算法通過搜尋表示環境資訊的環境地圖來獲得最終的路徑。比較有代表性的演算法有dijkstra演算法和a演算法。
dijkstra演算法是典型的廣度優先搜尋演算法。它是乙個按路徑長度遞增的次序產生的最短路徑的方法,是求解最短路徑的經典演算法之一。dijkstra演算法是一種貪心演算法,它在每一步都選擇區域性最優解,以產生乙個最優解。這也會導致該演算法的時間複雜度較高,在圖規模較大時,該演算法的計算速度慢,很難滿足路徑規劃實時性的要求。
a*演算法是經典的啟發式搜尋演算法,它是由dijkstra演算法改進而來的。其最顯著的特點就是在搜尋過程中增加了啟發函式,通過給定啟發函式來減少搜尋節點,從而提高路徑搜尋效率。研究表明,a*演算法搜尋得到的路徑能夠同時滿足實時性和最優性要求。
3、結語
現實環境遠比這要複雜,良好的規劃必須建立對周邊環境的深刻理解,另外還需要建立大量的數學方程,以及需要考慮障礙物、車道線、路徑曲率、曲率變化率以及車輛速度、加速度等多種因素的影響。
無人駕駛汽車
無人駕駛汽車是智慧型汽車的一種,也稱為輪式移動機械人,主要依靠車內的以計算機系統為主的智慧型駕駛儀來實現無人駕駛的目標。據湯森路透智財權與科技最新報告顯示,2010年到 2015年間,與汽車無人駕駛技術相關的發明專利超過22,000件,並且在此過程中,部分企業已嶄露頭角,成為該領域的行業領導者。無人...
無人駕駛汽車
21世紀是資訊網路時代,在這個時代,隨著人工智慧的不斷發展,人們逐漸把許多以前的不可能事件變成了現實。我們都知道,無人駕駛汽車是一種智慧型汽車,主要依靠車內以計算機系統為主的智慧型駕駛儀來實現無人駕駛。其利用車載感測器來感知車輛周圍環境,並根據感知所獲得的道路 車輛位置和障礙物資訊 控制車輛的轉向和...
無人駕駛系統概述
引自總結於 1.感知 收集環境資訊,如道路標誌,標記,定位,障礙物的位置,速度以及可能行為,可行駛區域,交通規則等。主要通過雷射雷達 能夠實時的建立起周圍環境的3維地圖稱為點雲圖 和相機等 為了更好理解點雲圖,對點雲資料進行處理,包括分割和定位。分割將點雲圖中離散的點聚類成若干個整體,分類則是區分出...