劍指 矩形覆蓋

2021-07-27 06:01:37 字數 481 閱讀 6876

我們可以用2*1的小矩形橫著或者豎著去覆蓋更大的矩形。請問用n個2*1的小矩形無重疊地覆蓋乙個2*n的大矩形,總共有多少種方法?

思路:

第一塊有兩種方式:橫著放和豎著放

橫這放對應為發f(n-2);

豎著放下一步的放方法為f(n-1);

所以總的放的方法為f(n)=f(n-1)+f(n-2);

實現:

int rectcover(int number)

return y;

/*直接遞迴

if(number<1) return 0;

if(number==1) return 1;

if(number==2) return 2;

return rectcover(number-1)+rectcover(number-2);

*/}

劍指offer 矩形覆蓋

我們可以用2 1的小矩形橫著或者豎著去覆蓋更大的矩形。請問用n個2 1的小矩形無重疊地覆蓋乙個2 n的大矩形,總共有多少種方法?觀察題目中的矩形,2 n的,是個長條形。本來腦中想象的是複雜的華容道,但是既然只是簡單的長條形,那麼依然逆向分析。既然是長條形的,那麼從後向前,最後乙個矩形2 2的,只有兩...

劍指Offer 矩形覆蓋

題目描述 我們可以用2 1的小矩形橫著或者豎著去覆蓋更大的矩形。請問用n個2 1的小矩形無重疊地覆蓋乙個2 n的大矩形,總共有多少種方法?思路 這個也是跳青蛙的變形 但是要自己找出當前的鋪法和以前鋪法的關係 注意到 情況一 當前塊的話可以由上一塊加上當前這一塊的豎著放 情況二 或者是 上上一塊加上兩...

劍指offer 矩形覆蓋

1 題目描述 我們可以用2 1的小矩形橫著或者豎著去覆蓋更大的矩形。請問用n個2 1的小矩形無重疊地覆蓋乙個2 n的大矩形,總共有多少種方法?2 思路 遞迴呼叫 若不存在小矩形,則返回0 若只存在乙個小矩形,則只有一種方法,返回1 若存在兩個小矩形,則存在兩種方法,返回2 若小矩形的數量大於2,則若...