分割問題(對遞迴的理解)

2021-07-09 02:00:18 字數 1421 閱讀 1049

原作:

(1) n條直線最多分平面問題

題目大致如:n條直線,最多可以把平面分為多少個區域。

析:可能你以前就見過這題目,這充其量是一道初中的思考題。但乙個型別的題目還是從簡單的入手,才容易發現規律。當有n-1條直線時,平面最多被分成了f(n-1)個區域。則第n條直線要是切成的區域數最多,就必須與每條直線相交且不能有同一交點。這樣就會得到n-1個交點。這些交點將第n條直線分為2條射線和n-2條線斷。而每條射線和線斷將以有的區域一分為二。這樣就多出了2+(n-2)個區域。

故:f(n)=f(n-1)+n

=f(n-2)+(n-1)+n

……=f(1)+1+2+……+n

=n(n+1)/2+1

(2) 折線分平面(hdu2050)

根據直線分平面可知,由交點決定了射線和線段的條數,進而決定了新增的區域數。當n-1條折線時,區域數為f(n-1)。為了使增加的區域最多,則折線的兩邊的線段要和n-1條折線的邊,即2*(n-1)條線段相交。那麼新增的線段數為4*(n-1),射線數為2。但要注意的是,折線本身相鄰的兩線段只能增加乙個區域。

故:f(n)=f(n-1)+4(n-1)+2-1

=f(n-1)+4(n-1)+1

=f(n-2)+4(n-2)+4(n-1)+2

……=f(1)+4+4*2+……+4(n-1)+(n-1)   

=2n^2-n+1

(3) 封閉曲線分平面問題

題目大致如設有n條封閉曲線畫在平面上,而任何兩條封閉曲線恰好相交於兩點,且任何三條封閉曲線不相交於同一點,問這些封閉曲線把平面分割成的區域個數。

析:當n-1個圓時,區域數為f(n-1).那麼第n個圓就必須與前n-1個圓相交,則第n個圓被分為2(n-1)段線段,增加了2(n-1)個區域。

故: f(n)=f(n-1)+2(n-1)     

=f(1)+2+4+……+2(n-1)

=n^2-n+2

(4)平面分割空間問題(hdu1290)

由二維的分割問題可知,平面分割與線之間的交點有關,即交點決定射線和線段的條數,從而決定新增的區域數。試想在三維中則是否與平面的交線有關呢?當有n-1個平面時,分割的空間數為f(n-1)。要有最多的空間數,則第n個平面需與前n-1個平面相交,且不能有共同的交線。即最多有n-1 條交線。而這n-1條交線把第n個平面最多分割成g(n-1)個區域。(g(n)為(1)中的直線分平面的個數)此平面將原有的空間一分為二,則最多增加g(n-1)個空間。

故:f=f(n-1)+g(n-1)    ps:g(n)=n(n+1)/2+1

=f(n-2)+g(n-2)+g(n-1)

……=f(1)+g(1)+g(2)+……+g(n-1)

=2+(1*2+2*3+3*4+……+(n-1)n)/2+(n-1)

=(1+2^2+3^2+4^2+……+n^2-1-2-3-……-n )/2+n+1

=(n^3+5n)/6+1

對遞迴的理解

昨天和宿舍一哥們討論二叉樹中求最近公共父節點問題時,才發現原來對遞迴的理解都是錯的,其實在程式內部分配的棧和資料結構的棧功能基本一樣,當然前者的棧還涉及到棧幀,函式內部訪問某個棧幀的元素並不一定是從棧頂訪問。舉乙個簡單的例子,遍歷乙個二叉樹,無論是非遞迴演算法和遞迴演算法時間複雜度都是o n 以前認...

遞迴 棋盤分割問題

language default 棋盤分割 time limit 1000ms memory limit 10000k total submissions 11819 accepted 4175 description 將乙個 的棋盤進行如下分割 將原棋盤割下一塊矩形棋盤並使剩下部分也是矩形,再將剩...

對遞迴模型的理解

一.遞迴模型 分而治之的思想也就是典型的遞迴思想,遞迴思想的核心就是 遞迴模型 的建立,遞迴模型 就是處理這類問題的乙個 相同的框架,這個框架不僅僅是處理總問題的框架,也是處理組成總問題的子問題的框架,這個框架具有公用性,要適用這種公用性,就可以推斷得出,這類問題的結構就有遞迴性質 從前有座上,山上...