在計算幾何中,判斷點是否在多邊形上包括點在多邊行上,點在多邊形內兩種情況
**如下,模板題
#include#include#include#include#include#include#include#include#include#include#include#include#define n 105
#define eps 1e-9
#define pi acos(-1.0)
#define p system("pause")
using namespace std;
struct point
point (){};
}p[n],a;
int n;
point operator - (point a,point b)
double dot(point a,point b)//點積
double cross(point a,point b)//叉積
int dcmp(double x)//判斷實數是否大於0,避免浮點誤差
if(wn!=0) return 1;
return 0;
}int main()
{//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
int m;
while(scanf("%d",&n)!=eof)
{int i;
for(i=0;i
hdu 1756 判斷點在多邊形內
模板題 1 include2 include3 include4 include5 include6 include7 define lson l,mid,rt 1 8 define rson mid 1,r,rt 1 1 9 define root 1,n,1 10 define mid l r ...
HDU1756 判斷點與多邊形的相對位置
題意 判斷點是否在給出的多邊形內 包括邊界 include include include include using namespace std const double eps 1e 8 判斷double型別 x 與0的大小 int dcmp double x int n,m,i,j,k,tem...
判斷點是否在多邊形內
1.叉乘判別法 只適用於凸多邊形 想象乙個凸多邊形,其每乙個邊都將整個2d螢幕劃分成為左右兩邊,連線每一邊的第乙個端點和要測試的點得到乙個向量v,將兩個2維向量擴充套件成3維的,然後將該邊與v叉乘,判斷結果3維向量中z分量的符號是否發生變化,進而推導出點是否處於凸多邊形內外。這裡要注意的是,多邊形頂...