幾種排序演算法的時間複雜度分析

2021-06-18 19:35:17 字數 2623 閱讀 4412

1.選擇排序:不穩定,時間複雜度 o(n^2)

選擇排序的基本思想是對待排序的記錄序列進行n-1遍的處理,第i遍處理是將l[i..n]中最小者與l[i]交換位置。這樣,經過i遍處理之後,前i個記錄的位置已經是正確的了。

2.插入排序:穩定,時間複雜度 o(n^2)

插入排序的基本思想是,經過i-1遍處理後,l[1..i-1]己排好序。第i遍處理僅將l[i]插入l[1..i-1]的適當位置,使得l[1..i] 又是排好序的序列。要達到這個目的,我們可以用順序比較的方法。首先比較l[i]和l[i-1],如果l[i-1]≤ l[i],則l[1..i]已排好序,第i遍處理就結束了;否則交換l[i]與l[i-1]的位置,繼續比較l[i-1]和l[i-2],直到找到某乙個位置j(1≤j≤i-1),使得l[j] ≤l[j+1]時為止。圖1演示了對4個元素進行插入排序的過程,共需要(a),(b),(c)三次插入。

3.氣泡排序:穩定,時間複雜度 o(n^2)

氣泡排序方法是最簡單的排序方法。這種方法的基本思想是,將待排序的元素看作是豎著排列的「氣泡」,較小的元素比較輕,從而要往上浮。在氣泡排序演算法中我們要對這個「氣泡」序列處理若干遍。所謂一遍處理,就是自底向上檢查一遍這個序列,並時刻注意兩個相鄰的元素的順序是否正確。如果發現兩個相鄰元素的順序不對,即「輕」的元素在下面,就交換它們的位置。顯然,處理一遍之後,「最輕」的元素就浮到了最高位置;處理二遍之後,「次輕」的元素就浮到了次高位置。在作第二遍處理時,由於最高位置上的元素已是「最輕」元素,所以不必檢查。一般地,第i遍處理時,不必檢查第i高位置以上的元素,因為經過前面i-1遍的處理,它們已正確地排好序。

4.堆排序:不穩定,時間複雜度 o(nlog n)

堆排序是一種樹形選擇排序,在排序過程中,將a[n]看成是完全二叉樹的順序儲存結構,利用完全二叉樹中雙親結點和孩子結點之間的內在關係來選擇最小的元素。

5.歸併排序:穩定,時間複雜度 o(nlog n)

設有兩個有序(公升序)序列儲存在同一陣列中相鄰的位置上,不妨設為a[l..m],a[m+1..h],將它們歸併為乙個有序數列,並儲存在a[l..h]。

6.快速排序:不穩定,時間複雜度 最理想 o(nlogn) 最差時間o(n^2)

快速排序是對氣泡排序的一種本質改進。它的基本思想是通過一趟掃瞄後,使得排序序列的長度能大幅度地減少。在氣泡排序中,一次掃瞄只能確保最大數值的數移到正確位置,而待排序序列的長度可能只減少1。快速排序通過一趟掃瞄,就能確保某個數(以它為基準點吧)的左邊各數都比它小,右邊各數都比它大。然後又用同樣的方法處理它左右兩邊的數,直到基準點的左右只有乙個元素為止。

7.希爾排序:不穩定,時間複雜度 平均時間 o(nlogn) 最差時間o(n^s) 1

在直接插入排序演算法中,每次插入乙個數,使有序序列只增加1個節點,並且對插入下乙個數沒有提供任何幫助。如果比較相隔較遠距離(稱為 增量)的數,使得數移動時能跨過多個元素,則進行一次比較就可能消除多個元素交換。d.l.shell於2023年在以他名字命名的排序演算法中實現了這一思想。演算法先將要排序的一組數按某個增量d分成若干組,每組中記錄的下標相差d.對每組中全部元素進行排序,然後再用乙個較小的增量對它進行,在每組中再進行排序。當增量減到1時,整個要排序的數被分成一組,排序完成。

排序類別

時間複雜度

空間複雜度

穩定

1

插入排序

o(n2)

1

2

希爾排序

o(n2)

1

×

3

氣泡排序

o(n2)

1

4

選擇排序

o(n2)

1

×

5

快速排序

o(nlogn)

o(logn)

×

6

堆排序

o(nlogn)

1

×

7

歸併排序

o(nlogn)

o(n)

演算法時間複雜度分析

定義 如果乙個問題的規模是n,解這一問題的某一演算法所需要的時間為t n 它是n的某一函式 t n 稱為這一演算法的 時間複雜性 求解演算法的時間複雜度的具體步驟是 1 找出演算法中的基本語句 演算法中執行次數最多的那條語句就是基本語句,通常是最內層迴圈的迴圈體。2 計算基本語句的執行次數的數量級 ...

演算法分析時間複雜度

對乙個演算法的分析,很多時候我們更關心演算法執行的時間複雜度。演算法的時間複雜度中,我們關心演算法執行的時間上界。即大o階分析方法。時間複雜度的分類 1 沒有迴圈遞迴的基本都是常數階。2 有一層迴圈的就是線性階。for int i 0 i dosth 3 對數階 一般類似如下 while i i i...

演算法時間複雜度分析

簡單而言,演算法時間複雜度就是數學裡面的函式,也就是演算法的時間度量,一般記作 t n o f n 演算法分析的分類 1.最壞情況 任意輸入規模的最大執行時間。上界 2.平均情況 任意輸入規模的期望執行時間。3.最好情況 任意輸入規模的最小執行時間,通常最好情況不會出現。下界 情景一 常數階 int...