下面就舉幾個常見的時間複雜度
常數階o(1)
通俗地來講,就是沒有迴圈等複雜結構
int i=0;
int j=2;
i++; j++
;int m=i+j;
對數階o(log2n)
在while迴圈裡面,每次都將 i 乘以 2,乘完之後,i 距離 n 就越來越近了。假設迴圈x次之後,i 就大於 2 了,此時這個迴圈就退出了,也就是說 2 的 x 次方等於 n,那麼 x = log2n也就是說當迴圈 log2n 次以後,這個**就結束了
int i=1;
while
(i
線性階o(n)
int j=0;
for(
int i=
0;i)
線性對數階o(nlogn)
這可以看成是對數階和常數階的巢狀
for
(int m=
0;m)}
演算法時間複雜度分析
定義 如果乙個問題的規模是n,解這一問題的某一演算法所需要的時間為t n 它是n的某一函式 t n 稱為這一演算法的 時間複雜性 求解演算法的時間複雜度的具體步驟是 1 找出演算法中的基本語句 演算法中執行次數最多的那條語句就是基本語句,通常是最內層迴圈的迴圈體。2 計算基本語句的執行次數的數量級 ...
演算法分析時間複雜度
對乙個演算法的分析,很多時候我們更關心演算法執行的時間複雜度。演算法的時間複雜度中,我們關心演算法執行的時間上界。即大o階分析方法。時間複雜度的分類 1 沒有迴圈遞迴的基本都是常數階。2 有一層迴圈的就是線性階。for int i 0 i dosth 3 對數階 一般類似如下 while i i i...
演算法時間複雜度分析
簡單而言,演算法時間複雜度就是數學裡面的函式,也就是演算法的時間度量,一般記作 t n o f n 演算法分析的分類 1.最壞情況 任意輸入規模的最大執行時間。上界 2.平均情況 任意輸入規模的期望執行時間。3.最好情況 任意輸入規模的最小執行時間,通常最好情況不會出現。下界 情景一 常數階 int...