取石子遊戲
time limit:1000ms
memory limit:10000k
total submissions:25176
accepted:7961
description
有兩堆石子,數量任意,可以不同。遊戲開始由兩個人輪流取石子。遊戲規定,每次有兩種不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在兩堆中同時取走相同數量的石子。最後把石子全部取完者為勝者。現在給出初始的兩堆石子的數目,如果輪到你先取,假設雙方都採取最好的策略,問最後你是勝者還是敗者。
input
輸入包含若干行,表示若干種石子的初始情況,其中每一行包含兩個非負整數a和b,表示兩堆石子的數目,a和b都不大於1,000,000,000。
output
輸出對應也有若干行,每行包含乙個數字1或0,如果最後你是勝者,則為1,反之,則為0。
sample input
2 1sample output8 44 7
010
我當時做的思路:
此題如果用常規的博弈演算法,比如極大極小、估值函式之類的方法來做,會舉步維艱。因為內容限制為10mb,但是資料值可大至1,000,000,000(約等於1g),所以不可能建乙個如此大的陣列。我開始觀察必贏/輸的數值規律:
發現在輪到你時對於給定的石子數(x,y),可以確定是必贏還是必輸。以1表示必贏,0表示必輸。
(0,1)=1,........,(0,n)=1
(1,1)=1,(1,2)=0,(1,3)=1,........ ,(1,n)=1 //我可以拿其中一堆中n-2個石子,給對手留下(1,2)的局面
(2,2)=1,(2,3)=1,.........,(2,n)=1 //我可以拿其中一堆n-1個石子,給對手留下(2,1)的局面
(3,3)=1,(3,4)=1,(3,5)=0,(3,6)=1,.........,(3,n)=1 //拿n-5個石子,留下(3,5)的局面
.....................
(4,7)=0;(6,10)=0;(8,13)=0;(9,15)=0 。。。。。。。。。。。
其中必輸局面的規律可以得出來:
(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。。。
(x,y)中 y-x 的值是遞增1的,而且x和y是不重複的自然數。
到這裡就有些眉目了,只要用乙個stone[i]陣列儲存(x,y)中的x值(因為y=x+i),再用乙個布林陣列記錄自然數序列中的值是否已用。這樣看來,問題變得很簡單了。
我的**如下:
#include using namespace std;
#define len 1000000
unsigned int *s;
bool exist[len];
int maxdelta=0;
int findnext(int x)
}void extend(int del)
}int main()
t=floor((y-x)*(sqrt(5.0)+1.0))/2;
if(t==x)cout<<0<
取石子遊戲
如下 include include intmain k b a temp floor k 1.0 sqrt 5 2.0 if temp a printf 0 n else printf 1 n return 0 一 巴什博奕 bash game 只有一堆n個物品,兩個人輪流從這堆物品中取物,規定每...
取石子遊戲
有兩堆石子,數量任意,可以不同。遊戲開始由兩個人輪流取石子。遊戲規定,每次有兩種不同的取法,一是可以在任意的一堆中取走任意多的石子 二是可以在兩堆中同時取走相同數量的石子。最後把石子全部取完者為勝者。現在給出初始的兩堆石子的數目,如果輪到你先取,假設雙方都採取最好的策略,問最後你是勝者還是敗者。in...
取石子遊戲
題目 1堆石子有n個,兩人輪流取.先取者第1次可以取任意多個,但不能全部取完.以後每次取的石子數不能超過上次取子數的2倍。取完者勝.先取者負輸出2.先取者勝輸出1.輸入 大於2的整數,表示石子的個數。輸出 1或者2 樣例 輸入 3輸出 2 includeusing namespace std int...