揹包九講(1)

2022-07-17 18:06:11 字數 2195 閱讀 8178

題目有n件物品和乙個容量為v的揹包。第i件物品的費用是c[i],價值是w[i]。求解將哪些物品裝入揹包可使價值總和最大。

基本思路

這是最基礎的揹包問題,特點是:每種物品僅有一件,可以選擇放或不放。

用子問題定義狀態:即f[i][v]表示前i件物品恰放入乙個容量為v的揹包可以獲得的最大價值。則其狀態轉移方程便是:

f[i][v]=max

這個方程非常重要,基本上所有跟揹包相關的問題的方程都是由它衍生出來的。所以有必要將它詳細解釋一下:「將前i件物品放入容量為v的揹包中」這個子問題,若只考慮第i件物品的策略(放或不放),那麼就可以轉化為乙個只牽扯前i-1件物品的問題。如果不放第i件物品,那麼問題就轉化為「前i-1件物品放入容量為v的揹包中」,價值為f[i-1][v];如果放第i件物品,那麼問題就轉化為「前i-1件物品放入剩下的容量為v-c[i]的揹包中」,此時能獲得的最大價值就是f[i-1][v-c[i]]再加上通過放入第i件物品獲得的價值w[i]。

優化空間複雜度

以上方法的時間和空間複雜度均為o(n*v),其中時間複雜度基本已經不能再優化了,但空間複雜度卻可以優化到o(v)。

先考慮上面講的基本思路如何實現,肯定是有乙個主迴圈i=1..n,每次算出來二維陣列f[i][0..v]的所有值。那麼,如果只用乙個陣列f[0..v],能不能保證第i次迴圈結束後f[v]中表示的就是我們定義的狀態f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]兩個子問題遞推而來,能否保證在推f[i][v]時(也即在第i次主迴圈中推f[v]時)能夠得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事實上,這要求在每次主迴圈中我們以v=v..0的順序推f[v],這樣才能保證推f[v]時f[v-c[i]]儲存的是狀態f[i-1][v-c[i]]的值。偽**如下:

for i=1..n

for v=v..0

f[v]=max;

其中的f[v]=max一句恰就相當於我們的轉移方程f[i][v]=max,因為現在的f[v-c[i]]就相當於原來的f[i-1][v-c[i]]。如果將v的迴圈順序從上面的逆序改成順序的話,那麼則成了f[i][v]由f[i][v-c[i]]推知,與本題意不符,但它卻是另乙個重要的揹包問題p02最簡捷的解決方案,故學習只用一維陣列解01揹包問題是十分必要的。

事實上,使用一維陣列解01揹包的程式在後面會被多次用到,所以這裡抽象出乙個處理一件01揹包中的物品過程,以後的**中直接呼叫不加說明。

過程zeroonepack,表示處理一件01揹包中的物品,兩個引數cost、weight分別表明這件物品的費用和價值。

procedure zeroonepack(cost,weight)

for v=v..cost

f[v]=max

注意這個過程裡的處理與前面給出的偽**有所不同。前面的示例程式寫成v=v..0是為了在程式中體現每個狀態都按照方程求解了,避免不必要的思維複雜度。而這裡既然已經抽象成看作黑箱的過程了,就可以加入優化。費用為cost的物品不會影響狀態f[0..cost-1],這是顯然的。

有了這個過程以後,01揹包問題的偽**就可以這樣寫:

for i=1..n

zeroonepack(c[i],w[i]);

初始化的細節問題

我們看到的求最優解的揹包問題題目中,事實上有兩種不太相同的問法。有的題目要求「恰好裝滿揹包」時的最優解,有的題目則並沒有要求必須把揹包裝滿。一種區別這兩種問法的實現方法是在初始化的時候有所不同。

如果是第一種問法,要求恰好裝滿揹包,那麼在初始化時除了f[0]為0其它f[1..v]均設為-∞,這樣就可以保證最終得到的f[n]是一種恰好裝滿揹包的最優解。

如果並沒有要求必須把揹包裝滿,而是只希望**盡量大,初始化時應該將f[0..v]全部設為0。

為什麼呢?可以這樣理解:初始化的f陣列事實上就是在沒有任何物品可以放入揹包時的合法狀態。如果要求揹包恰好裝滿,那麼此時只有容量為0的揹包可能被價值為0的nothing「恰好裝滿」,其它容量的揹包均沒有合法的解,屬於未定義的狀態,它們的值就都應該是-∞了。如果揹包並非必須被裝滿,那麼任何容量的揹包都有乙個合法解「什麼都不裝」,這個解的價值為0,所以初始時狀態的值也就全部為0了。

這個小技巧完全可以推廣到其它型別的揹包問題,後面也就不再對進行狀態轉移之前的初始化進行講解。

小結01揹包問題是最基本的揹包問題,它包含了揹包問題中設計狀態、方程的最基本思想,另外,別的型別的揹包問題往往也可以轉換成01揹包問題求解。故一定要仔細體會上面基本思路的得出方法,狀態轉移方程的意義,以及最後怎樣優化的空間複雜度。

首頁

揹包九講 簡單揹包

揹包問題是一種動態規劃演算法的衍生問題。它可以被看作一種獨立的題型,也可以看作是一種線性動態規劃。學好揹包 學會揹包,對於深入理解動態規劃演算法有著極大的好處,並能幫助理解一些更深層次的動態規劃問題。那麼就開始吧 題目型別 有 n 件物品和乙個容量為 v 的揹包。第 i 件物品的費體積是 v i 價...

演算法 揹包九講

例題參考 資訊學奧賽一本通 初始化分兩種情況 1 如果揹包要求正好裝滿則初始化 f 0 0,f 1 v inf 2 如果不需要正好裝滿 f 0 v 0 有n件物品和乙個容量為v的揹包。第i件物品的費用 即體積,下同 是w i 價值是c i 求解將哪些物品裝入揹包可使這些物品的費用總和不超過揹包容量,...

揹包九講(9)

以上涉及的各種揹包問題都是要求在揹包容量 費用 的限制下求可以取到的最大價值,但揹包問題還有很多種靈活的問法,在這裡值得提一下。但是我認為,只要深入理解了求揹包問題最大價值的方法,即使問法變化了,也是不難想出演算法的。例如,求解最多可以放多少件物品或者最多可以裝滿多少揹包的空間。這都可以根據具體問題...