最小生成樹Prim演算法理解

2022-06-02 19:39:07 字數 2807 閱讀 2829

本文**自:點我轉移

mst(minimum spanning tree,最小生成樹)問題有兩種通用的解法,prim演算法就是其中之一,

它是從點的方面考慮構建一顆mst,大致思想是:設圖g頂點集合為u,首先任意選擇圖g中的一點作為起始點a,

將該點加入集合v,再從集合u-v中找到另一點b使得點b到v中任意一點的權值最小,此時將b點也加入集合v;

以此類推,現在的集合v=,再從集合u-v中找到另一點c使得點c到v中任意一點的權值最小,此時將c點加入集合v,

直至所有頂點全部被加入v,此時就構建出了一顆mst。因為有n個頂點,所以該mst就有n-1條邊,每一次向集合v中加入乙個點,就意味著找到一條mst的邊。

初始狀態:

設定2個資料結構:

lowcost[i]:表示以i為終點的邊的最小權值,當lowcost[i]=0說明以i為終點的邊的最小權值=0,也就是表示i點加入了mst

mst[i]:表示對應lowcost[i]的起點,即說明邊是mst的一條邊,當mst[i]=0表示起點i加入mst

我們假設v1是起始點,進行初始化(*代表無限大,即無通路):

lowcost[2]=6,lowcost[3]=1,lowcost[4]=5,lowcost[5]=*,lowcost[6]=*

mst[2]=1,mst[3]=1,mst[4]=1,mst[5]=1,mst[6]=1,(所有點預設起點是v1)

明顯看出,以v3為終點的邊的權值最小=1,所以邊=1加入mst

此時,因為點v3的加入,需要更新lowcost陣列和mst陣列:

lowcost[2]=5,lowcost[3]=0,lowcost[4]=5,lowcost[5]=6,lowcost[6]=4

mst[2]=3,mst[3]=0,mst[4]=1,mst[5]=3,mst[6]=3

明顯看出,以v6為終點的邊的權值最小=4,所以邊=4加入mst

此時,因為點v6的加入,需要更新lowcost陣列和mst陣列:

lowcost[2]=5,lowcost[3]=0,lowcost[4]=2,lowcost[5]=6,lowcost[6]=0

mst[2]=3,mst[3]=0,mst[4]=6,mst[5]=3,mst[6]=0

明顯看出,以v4為終點的邊的權值最小=2,所以邊=4加入mst

此時,因為點v4的加入,需要更新lowcost陣列和mst陣列:

lowcost[2]=5,lowcost[3]=0,lowcost[4]=0,lowcost[5]=6,lowcost[6]=0

mst[2]=3,mst[3]=0,mst[4]=0,mst[5]=3,mst[6]=0

明顯看出,以v2為終點的邊的權值最小=5,所以邊=5加入mst

此時,因為點v2的加入,需要更新lowcost陣列和mst陣列:

lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=3,lowcost[6]=0

mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=2,mst[6]=0

很明顯,以v5為終點的邊的權值最小=3,所以邊=3加入mst

lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=0,lowcost[6]=0

mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=0,mst[6]=0

至此,mst構建成功,如圖所示:

根據上面的過程,可以容易的寫出具體實現**如下(cpp):

#includeusing

namespace

std;

#define max 100

#define maxcost 0x7fffffff

intgraph[max][max];

int prim(int graph[max], int

n) mst[

1] = 0

;

for (i = 2; i <= n; i++)

}cout

<< "v"

<< mst[minid] << "-v"

<< minid << "="

<< min <

sum +=min;

lowcost[minid] = 0

;

for (j = 2; j <= n; j++)}}

return

sum;

}int

main()

}//構建圖g

for (k = 1; k <= n; k++)

//求解最小生成樹

cost =prim(graph, m);

//輸出最小權值和

cout << "

最小權值和=

"<< cost <

system(

"pause");

return0;

}

最小生成樹Prim演算法理解

mst minimum spanning tree,最小生成樹 問題有兩種通用的解法,prim演算法就是其中之一,它是從點的方面考慮構建一顆mst,大致思想是 設圖g頂點集合為u,首先任意選擇圖g中的一點作為起始點a,將該點加入集合v,再從集合u v中找到另一點b使得點b到v中任意一點的權值最小,此...

最小生成樹Prim演算法理解

mst minimum spanning tree,最小生成樹 問題有兩種通用的解法,prim演算法就是其中之一,它是從點的方面考慮構建一顆mst,大致思想是 設圖g頂點集合為u,首先任意選擇圖g中的一點作為起始點a,將該點加入集合v,再從集合u v中找到另一點b使得點b到v中任意一點的權值最小,此...

最小生成樹Prim演算法理解

mst minimum spanning tree,最小生成樹 問題有兩種通用的解法,prim演算法就是其中之一,它是從點的方面考慮構建一顆mst,大致思想是 設圖g頂點集合為u,首先任意選擇圖g中的一點作為起始點a,將該點加入集合v,再從集合u v中找到另一點b使得點b到v中任意一點的權值最小,此...