POJ 1183 反正切函式的應用 推公式

2022-05-19 01:37:10 字數 1520 閱讀 6624

time limit:1000ms

memory limit:10000k

total submissions:14468

accepted:5227

description

反正切函式可展開成無窮級數,有如下公式 

(其中0 <= x <= 1) 公式(1) 

使用反正切函式計算pi是一種常用的方法。例如,最簡單的計算pi的方法: 

pi=4arctan(1)=4(1-1/3+1/5-1/7+1/9-1/11+...) 公式(2) 

然而,這種方法的效率很低,但我們可以根據角度和的正切函式公式: 

tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)*tan(b)] 公式(3) 

通過簡單的變換得到: 

arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)] 公式(4) 

利用這個公式,令p=1/2,q=1/3,則(p+q)/(1-pq)=1,有 

arctan(1/2)+arctan(1/3)=arctan[(1/2+1/3)/(1-1/2*1/3)]=arctan(1) 

使用1/2和1/3的反正切來計算arctan(1),速度就快多了。 

我們將公式(4)寫成如下形式 

arctan(1/a)=arctan(1/b)+arctan(1/c) 

其中a,b和c均為正整數。 

我們的問題是:對於每乙個給定的a(1 <= a <= 60000),求b+c的值。我們保證對於任意的a都存在整數解。如果有多個解,要求你給出b+c最小的解。 

input

輸入檔案中只有乙個正整數a,其中 1 <= a <= 60000。

output

輸出檔案中只有乙個整數,為 b+c 的值。

sample input

1
sample output

5
source

noi 01

一道推公式的題目,注意資料範圍

1/a = (1/b + 1/c)/ (1 - 1/(b*c)) => bc-1 = a(b+c) assume b=a+m and c=a+n (b and c is always bigger than a) (a+m)(a+n)-1=a(a+m+a+n) => a*a+a*n+a*m+m*n-1=2*a*a+m*a+n*a => m*n=a*a+1

再列舉m(或者n)即可

關鍵是b=a+m,c=a+n這裡的乙個轉換

1 #include2 #include3 #include4 #include5 #include6

#define ll __int64

7using

namespace

std;

8int

main()920

}21return0;

22 }

view code

poj1183 反正切函式

第一道poj的題更博,類似於博主這種英文水平,也就切一切這種中文題了吧!題目大意 給你正整數a,求滿足條件的 b 和 c,使得 frac frac frac 且 b c 的和最小。注釋 1 a 60,000 想法 乍一看,數論啊!嘻嘻嘻嘻,好開心,但是沒做出來。問了一下神犇ck蛤學長,掌握了一種極猛...

poj 1183 反正切函式的應用

description 反正切函式可展開成無窮級數,有如下公式 使用反正切函式計算pi是一種常用的方法。例如,最簡單的計算pi的方法 pi 4arctan 1 4 1 1 3 1 5 1 7 1 9 1 11 公式 2 然而,這種方法的效率很低,但我們可以根據角度和的正切函式公式 tan a b t...

(POJ 1183)反正切函式的應用

反正切函式的應用 description 反正切函式可展開成無窮級數,有如下公式 使用反正切函式計算pi是一種常用的方法。例如,最簡單的計算pi的方法 pi 4arctan 1 4 1 1 3 1 5 1 7 1 9 1 11 公式 2 然而,這種方法的效率很低,但我們可以根據角度和的正切函式公式 ...