開燈關燈問題

2022-01-24 08:09:02 字數 1033 閱讀 8642

有編號1~100個燈泡,起初所有的燈都是滅的。有100個同學來按燈泡開關,如果燈是亮的,那麼按過開關之後,燈會滅掉。如果燈是滅的,按過開關之後燈會亮。

現在開始按開關。

第1個同學,把所有的燈泡開關都按一次(按開關燈的編號: 1,2,3,......100)。

第2個同學,隔乙個燈按一次(按開關燈的編號: 2,4,6,......,100)。

第3個同學,隔兩個燈按一次(按開關燈的編號: 3,6,9,......,99)。

......

問題是,在第100個同學按過之後,有多少盞燈是亮著的?

這個問題有乙個數學上的解決方法。可以看出,被按了奇數次的燈泡應該是亮著的,被按了偶數次的燈泡應該是滅的。那麼什麼樣的燈泡被按了奇數次?什麼樣的燈泡又被按了偶數次呢?從按的過程可以發現,如果乙個燈泡的編號具有偶數個因子,那麼該燈泡就被按了偶數次,反之按了奇數次。現在的問題又變成,什麼樣的編號具有奇數個因子,什麼樣的編號具有偶數個因子?這涉及到乙個叫做質因數分解的定理,大概的意思是說,任何正數都能被唯一表示成多個質因數冪次乘積的方式。

例如:

14=2*7

50=2*5^2

...100=2^2*5^2

也就是n=(p[1]^e[1])*(p[2]^e[2])*......*(p[k]^e[k]),其中p[i]是質數,e[i]是p[i]的冪次。而由這個公式我們又可以匯出乙個數有多少個因子的計算公式:factornumber(n)=(e[1]+1)*(e[2]+1)*......*(e[k]+1)。

那麼什麼條件下滿足factornumber(n)是奇數呢?顯然必須所有的e[1],e[2],......,e[k]都必須是偶數,這樣才能保證e[i]+1是奇數,結果乘積才能是奇數。而由於e[1],e[2],......,e[k]都是偶數,那麼n一定是乙個完全平方數(因為sqrt(n)=(p[1]^(e[1]/2))*(p[2]^(e[2]/2))*......*(p[k]^(e[k]/2))是整數) 。回到按燈泡的問題上來,1~100中完全平方數有1,4,9,16,25,36,49,64,81,100這10個數,也就是說最後只有編號為這10個數的燈是亮著的。

開燈關燈問題

題目 大廳裡有100盞燈,每盞燈都編了號碼,分別為1 100。每盞燈由乙個開關來控制。開關按一下,燈亮,再按一下燈滅。開關的編號與被控制的燈相同。開始時,燈是全滅的。現在按照以下規則按動開關。第一次,將所有的燈點亮。第二次,將所有2的倍數的開關按一下。第三次,將所有3的倍數的開關按一下。以此類推。第...

開燈關燈問題

有編號1 100個燈泡,起初所有的燈都是滅的。有100個同學來按燈泡開關,如果燈是亮的,那麼按過開關之後,燈會滅掉。如果燈是滅的,按過開關之後燈會亮。現在開始按開關。第1個同學,把所有的燈泡開關都按一次 按開關燈的編號 1,2,3,100 第2個同學,隔乙個燈按一次 按開關燈的編號 2,4,6,10...

開燈關燈問題

有編號1 100個燈泡,起初所有的燈都是滅的。有100個同學來按燈泡開關,如果燈是亮的,那麼按過開關之後,燈會滅掉。如果燈是滅的,按過開關之後燈會亮。現在開始按開關。第1個同學,把所有的燈泡開關都按一次 按開關燈的編號 1,2,3,100 第2個同學,隔乙個燈按一次 按開關燈的編號 2,4,6,10...