著名的快速排序演算法裡有乙個經典的劃分過程:我們通常採用某種方法取乙個元素作為主元,通過交換,把比主元小的元素放到它的左邊,比主元大的元素放到它的右邊。 給定劃分後的 n 個互不相同的正整數的排列,請問有多少個元素可能是劃分前選取的主元?
例如給定 n=5
n = 5
n=5, 排列是1、3、2、4、5。則:
1 的左邊沒有元素,右邊的元素都比它大,所以它可能是主元;
儘管 3 的左邊元素都比它小,但其右邊的 2 比它小,所以它不能是主元;
儘管 2 的右邊元素都比它大,但其左邊的 3 比它大,所以它不能是主元;
類似原因,4 和 5 都可能是主元。
因此,有 3 個元素可能是主元。
輸入在第 1 行中給出乙個正整數 n(≤105); 第 2 行是空格分隔的 n 個不同的正整數,每個數不超過 109。
在第 1 行中輸出有可能是主元的元素個數;在第 2 行中按遞增順序輸出這些元素,其間以 1 個空格分隔,行首尾不得有多餘空格。
51 3 2 4 5
3dinger的**:1 4 5
#include
#include
#include
#include
#include
using
namespace std;
intmain()
if(numbers[i]
>= maxnumber)
}int minnumber = numbers[n -1]
; vector<
int> resultnumbers;
for(
int i = n -
1; i >=
0; i--
)continue;}
if(numbers[i]
<= minnumber)
}printf
("%d\n"
, resultnumbers.
size()
);for(
int i = resultnumbers.
size()
-1; i >=
0; i--)}
cout << endl;
}
1045 快速排序 (25 分)
著名的快速排序演算法裡有乙個經典的劃分過程 我們通常採用某種方法取乙個元素作為主元,通過交換,把比主元小的元素放到它的左邊,比主元大的元素放到它的右邊。給定劃分後的 n 個互不相同的正整數的排列,請問有多少個元素可能是劃分前選取的主元?例如給定 n 5 n 5 n 5,排列是1 3 2 4 5。則 ...
1045 快速排序 (25 分
1045 快速排序 25 分 著名的快速排序演算法裡有乙個經典的劃分過程 我們通常採用某種方法取乙個元素作為主元,通過交換,把比主元小的元素放到它的左邊,比主元大的元素放到它的右邊。給定劃分後的 n 個互不相同的正整數的排列,請問有多少個元素可能是劃分前選取的主元?例如給定 n 5 n 5 n 5,...
1045 快速排序 25分
著名的快速排序演算法裡有乙個經典的劃分過程 我們通常採用某種方法取乙個元素作為主元,通過交換,把比主元小的元素放到它的左邊,比主元大的元素放到它的右邊。給定劃分後的 n 個互不相同的正整數的排列,請問有多少個元素可能是劃分前選取的主元?例如給定 n 5 n 5 n 5,排列是1 3 2 4 5。則 ...