函式的凹凸區間怎麼求 函式凹凸區間怎麼求

2021-10-16 20:57:46 字數 3214 閱讀 9177

匿名使用者

1級2011-03-12 回答

定分和不定積分)及他們的應用。

理工類考的除上述內容外還有長微分,級數等內容。

2難易度:經管和理工的難易度不同,經管類只要求會簡單運算,而理工類要求要透徹掌握!

一、函式、極限和連續

(一)函式

(1)理解函式的概念:函式的定義,函式的表示法,分段函式。

(2)理解和掌握函式的簡單性質:單調性,奇偶性,有界性,週期性。

(3)了解反函式:反函式的定義,反函式的圖象。

(4)掌握函式的四則運算與復合運算。

(5)理解和掌握基本初等函式:冪函式,指數函式,對數函式,三角函式,反三角函式。

(6)了解初等函式的概念。

(二)極限

(1)理解數列極限的概念:數列,數列極限的定義,能根據極限概念分析函式的變化趨勢。會求函式在一點處的左極限與右極限,了解函式在一點處極限存在的充分必要條件。

(2)了解數列極限的性質:唯一性,有界性,四則運算定理,夾逼定理,單調有界數列,極限存在定理,掌握極限的四則運算法則。

(3)理解函式極限的概念:函式在一點處極限的定義,左、右極限及其與極限的關係,x趨於無窮(x→∞,x→+∞,x→-∞)時函式的極限。

(4)掌握函式極限的定理:唯一性定理,夾逼定理,四則運算定理。

(5)理解無窮小量和無窮大量:無窮小量與無窮大量的定義,無窮小量與無窮大量的關係,無窮小量與無窮大量的性質,兩個無窮小量階的比較。

(6)熟練掌握用兩個重要極限求極限的方法。

(三)連續

(1)理解函式連續的概念:函式在一點連續的定義,左連續和右連續,函式在一點連續的充分必要條件,函式的間斷點及其分類。

(2)掌握函式在一點處連續的性質:連續函式的四則運算,復合函式的連續性,反函式的連續性,會求函式的間斷點及確定其型別。

(3)掌握閉區間上連續函式的性質:有界性定理,最大值和最小值定理,介值定理(包括零點定理),會運用介值定理推證一些簡單命題。

(4)理解初等函式在其定義區間上連續,並會利用連續性求極限。

二、一元函式微分學

(一)導數與微分

(1)理解導數的概念及其幾何意義,了解可導性與連續性的關係,會用定義求函式在一點處的導數。

(2)會求曲線上一點處的切線方程與法線方程。

(3)熟練掌握導數的基本公式、四則運算法則以及復合函式的求導方法。

(4)掌握隱函式的求導法、對數求導法以及由引數方程所確定的函式的求導方法,會求分段函式的導數。

(5)理解高階導數的概念,會求簡單函式的n階導數。

(6)理解函式的微分概念,掌握微分法則,了解可微與可導的關係,會求函式的一階微分。

(二)中值定理及導數的應用

(1)了解羅爾中值定理、拉格朗日中值定理及它們的幾何意義。

(2)熟練掌握洛必達法則求「0/0」、「∞/ ∞」、「0?∞」、「∞-∞」、「1∞」、「00」和「∞0」型未定式的極限方法。

(3)掌握利用導數判定函式的單調性及求函式的單調增、減區間的方法,會利用函式的增減性證明簡單的不等式。

(4)理解函式極值的概念,掌握求函式的極值和最大(小)值的方法,並且會解簡單的應用問題。

(5)會判定曲線的凹凸性,會求曲線的拐點。

(6)會求曲線的水平漸近線與垂直漸近線。

三、一元函式積分學

(一)不定積分

(1)理解原函式與不定積分概念及其關係,掌握不定積分性質,了解原函式存在定理。

(2)熟練掌握不定積分的基本公式。

(3)熟練掌握不定積分第一換元法,掌握第二換元法(限於三角代換與簡單的根式代換)。

(4)熟練掌握不定積分的分部積分法。

(二)定積分

(1)理解定積分的概念與幾何意義,了解可積的條件。

(2)掌握定積分的基本性質。

(3)理解變上限的定積分是變上限的函式,掌握變上限定積分求導數的方法。

(4)掌握牛頓—萊布尼茨公式。

(5)掌握定積分的換元積分法與分部積分法。

(6)理解無窮區間廣義積分的概念,掌握其計算方法。

(7)掌握直角座標系下用定積分計算平面圖形的面積。

四、向量代數與空間解析幾何

(一)向量代數

(1)理解向量的概念,掌握向量的座標表示法,會求單位向量、方向余弦、向量在座標軸上的投影。

(2)掌握向量的線性運算、向量的數量積與向量積的計算方法。

(3)掌握二向量平行、垂直的條件。

(二)平面與直線

(1)會求平面的點法式方程、一般式方程。會判定兩平面的垂直、平行。

(2)會求點到平面的距離。

(3)了解直線的一般式方程,會求直線的標準式方程、引數式方程。會判定兩直線平行、垂直。

(4)會判定直線與平面間的關係(垂直、平行、直線在平面上)。

五、多元函式微積分

(一)多元函式微分學

(1)了解多元函式的概念、二元函式的幾何意義及二元函式的極值與連續概念(對計算不作要求)。會求二元函式的定義域。

(2)理解偏導數、全微分概念,知道全微分存在的必要條件與充分條件。

(3)掌握二元函式的

一、二階偏導數計算方法。

(4)掌握復合函式一階偏導數的求法。

(5)會求二元函式的全微分。

(6)掌握由方程f(x,y,z)=0所確定的隱函式z=z(x,y)的一階偏導數的計算方法。

(7)會求二元函式的無條件極值。

(二)二重積分

(1)理解二重積分的概念、性質及其幾何意義。

(2)掌握二重積分在直角座標系及極座標系下的計算方法。

六、無窮級數

(一)數項級數

(1)理解級數收斂、發散的概念。掌握級數收斂的必要條件,了解級數的基本性質。

(2)掌握正項級數的比值數別法。會用正項級數的比較判別法。

(3)掌握幾何級數、調和級數與p級數的斂散性。

(4)了解級數絕對收斂與條件收斂的概念,會使用萊布尼茨判別法。

(二)冪級數

(1)了解冪級數的概念,收斂半徑,收斂區間。

(2)了解冪級數在其收斂區間內的基本性質(和、差、逐項求導與逐項積分)。

(3)掌握求冪級數的收斂半徑、收斂區間(不要求討論端點)的方法。

七、常微分方程

(一)一階微分方程

(1)理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解。

(2)掌握可分離變數方程的解法。

(3)掌握一階線性方程的解法。

(二)二階線性微分方程

(1)了解二階線性微分方程解的結構。

(2)掌握二階常係數齊次線性微分方程的解法。v

函式的凹凸性

設函式 f x 在區間 i 上有定義,在 i 內任取兩點 x x 對任意的 lambda in 0,1 有 lambda x 1 lambda x in x x a 點座標 x f x a 點座標 x f x a 點座標 x,f x 於是可以求得 y frac x x f x frac x f x ...

函式的凹凸性證明 判斷複雜函式的凹凸性

判斷無人機能量x關係函式的凹凸性 函式是關於v和drt的二元函式 函式有非常多的引數,極其複雜,看到就煩,我首先用畫函式的方法通過影象法來觀察,但是畫出來的影象不忍直視 或許是我畫的影象不對,反正看起來就非常low,一看就知道影象不正確 因此放棄了 通過幾天的煩惱,終於想到乙個法子,先求帶有引數的海...

判斷目標函式的凹凸性

就是直接對目標函式進行計算,然後判斷其是否凸。具體地,就是計算目標函式的一階導數和二階導數。然後作出判斷。等號右邊是對函式在x點的一階近似。這個條件的意義是,對於函式在定義域的任意取值,函式的值都大於或者等於對函式在這點的一階近似。用圖來說明就是 通過圖可以很清楚地理解這個充要條件,但是,具體在應用...