問題描述
任何乙個正整數都可以用2進製表示,例如:137的2進製表示為10001001。
將這種2進製表示寫成2的次冪的和的形式,令次冪高的排在前面,可得到如下表示式:137=27+23+2^0
現在約定冪次用括號來表示,即a^b表示為a(b)
此時,137可表示為:2(7)+2(3)+2(0)
進一步:7=22+2+20 (2^1用2表示)
3=2+2^0
所以最後137可表示為:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=210+28+2^5+2+1
所以1315最後可表示為:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
輸入格式
正整數(1<=n<=20000)
輸出格式
符合約定的n的0,2表示(在表示中不能有空格)
樣例輸入
137樣例輸出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
樣例輸入
1315
樣例輸出
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示
用遞迴實現會比較簡單,可以一邊遞迴一邊輸出
#include
#include
#include
using
namespace std;
bool tag=
false
;voidf(
int n)
//n表示要分解的數
for(i=
0;ifor(i=k-
1;i>
0;i--
)else
if(b[i]==0
)else}}
intmain()
藍橋杯 演算法訓練 2的次冪表示
問題描述 任何乙個正整數都可以用2進製表示,例如 137的2進製表示為10001001。將這種2進製表示寫成2的次冪的和的形式,令次冪高的排在前面,可得到如下表示式 137 2 7 2 3 2 0 現在約定冪次用括號來表示,即a b表示為a b 此時,137可表示為 2 7 2 3 2 0 進一步 ...
藍橋杯 演算法訓練 2的次冪表示
問題描述 任何乙個正整數都可以用2進製表示,例如 137的2進製表示為10001001。將這種2進製表示寫成2的次冪的和的形式,令次冪高的排在前面,可得到如下表示式 137 2 7 2 3 2 0 現在約定冪次用括號來表示,即a b表示為a b 此時,137可表示為 2 7 2 3 2 0 進一步 ...
藍橋杯 演算法訓練 2的次冪表示
問題描述 任何乙個正整數都可以用2進製表示,例如 137的2進製表示為10001001。將這種2進製表示寫成2的次冪的和的形式,令次冪高的排在前面,可得到如下表示式 137 2 7 2 3 2 0 現在約定冪次用括號來表示,即a b表示為a b 此時,137可表示為 2 7 2 3 2 0 進一步 ...