題目描述
給定任乙個各位數字不完全相同的 4 位正整數,如果我們先把 4 個數字按非遞增排序,再按非遞減排序,然後用第 1 個數字減第 2 個數字,將得到乙個新的數字。一直重複這樣做,我們很快會停在有「數字黑洞」之稱的 6174,這個神奇的數字也叫 kaprekar 常數。
例如,我們從6767開始,將得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …現給定任意 4 位正整數,請編寫程式演示到達黑洞的過程。
輸入格式:
輸入給出乙個 (0,10^4 ) 區間內的正整數 n。
輸出格式:
如果 n 的 4 位數字全相等,則在一行內輸出 n - n = 0000;否則將計算的每一步在一行內輸出,直到 6174 作為差出現,輸出格式見樣例。注意每個數字按 4 位數格式輸出。
輸入樣例 1:
輸出樣例 1:7766 - 6677 = 1089輸入樣例 2:輸出樣例 2:9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
2222 - 2222 = 0000思路
輸入的n的範圍為0-10000,直接用int型輸入,再將每位儲存在陣列中,不足4位的部分儲存為0。
%04d 可將不足4位的數用0補充為4位
**
#include
using namespace std;
void
to_array
(int n,
int a)
}int
main()
while
(num!=
0&&num!=
6174
)return0;
}
PAT B1019 數字黑洞
給定任乙個各位數字不完全相同的4位正整數,如果我們先把4個數字按非遞增排序,再按非遞減排序,然後用第1個數字減第2個數字,將得到乙個新的數字。一直重複這樣做,我們很快會停在有 數字黑洞 之稱的6174,這個神奇的數字也叫kaprekar常數。例如,我們從6767開始,將得到 7766 6677 10...
PAT B1019 數字黑洞
給定任乙個各位數字不完全相同的 4 位正整數,如果我們先把 4 個數字按非遞增排序,再按非遞減排序,然後用第 1 個數字減第 2 個數字,將得到乙個新的數字。一直重複這樣做,我們很快會停在有 數字黑洞 之稱的6174,這個神奇的數字也叫 kaprekar 常數。例如,我們從6767開始,將得到 77...
PAT B1019 數字黑洞 20
給定任乙個各位數字不完全相同的4位正整數,如果我們先把4個數字按非遞增排序,再按非遞減排序,然後用第1個數字減第2個數字,將得到乙個新的數字。一直重複這樣做,我們很快會停在有 數字黑洞 之稱的6174,這個神奇的數字也叫kaprekar常數。例如,我們從6767開始,將得到 7766 6677 10...