給定任乙個各位數字不完全相同的 4 位正整數,如果我們先把 4 個數字按非遞增排序,再按非遞減排序,然後用第 1 個數字減第 2 個數字,將得到乙個新的數字。一直重複這樣做,我們很快會停在有「數字黑洞」之稱的6174
,這個神奇的數字也叫 kaprekar 常數。
例如,我們從6767
開始,將得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
現給定任意 4 位正整數,請編寫程式演示到達黑洞的過程。
輸入給出乙個 (0,104) 區間內的正整數 n。
如果 n 的 4 位數字全相等,則在一行內輸出n - n = 0000
;否則將計算的每一步在一行內輸出,直到6174
作為差出現,輸出格式見樣例。注意每個數字按4
位數格式輸出。
6767
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
2222
2222 - 2222 = 0000
**:
#include#include#includeusing namespace std;
// 四位正整數, 遞減排序a 遞增排序b
// a - b = c c會停留在6174
// 數字--陣列--排序--數字
// 知道c的結果為0000 或者 6174出現 跳出迴圈
// 遞減排序 max
bool cmp2(int a, int b)
int make(int a)
return r;
}void to_array(int a, int n)
} int main() , max = 0, min = 0;
scanf("%d", &n);
while(true)
return 0;
}
PAT B 1019 數字黑洞 (20 分)
給定任乙個各位數字不完全相同的 4 位正整數,如果我們先把 4 個數字按非遞增排序,再按非遞減排序,然後用第 1 個數字減第 2 個數字,將得到乙個新的數字。一直重複這樣做,我們很快會停在有 數字黑洞 之稱的 6174,這個神奇的數字也叫 kaprekar 常數。例如,我們從6767開始,將得到 7...
PAT B1019 數字黑洞 20
給定任乙個各位數字不完全相同的4位正整數,如果我們先把4個數字按非遞增排序,再按非遞減排序,然後用第1個數字減第2個數字,將得到乙個新的數字。一直重複這樣做,我們很快會停在有 數字黑洞 之稱的6174,這個神奇的數字也叫kaprekar常數。例如,我們從6767開始,將得到 7766 6677 10...
PAT B1019 數字黑洞
給定任乙個各位數字不完全相同的4位正整數,如果我們先把4個數字按非遞增排序,再按非遞減排序,然後用第1個數字減第2個數字,將得到乙個新的數字。一直重複這樣做,我們很快會停在有 數字黑洞 之稱的6174,這個神奇的數字也叫kaprekar常數。例如,我們從6767開始,將得到 7766 6677 10...