def fit_loop(model,
inputs,
targets,
sample_weights=none,
class_weight=none,
val_inputs=none,
val_targets=none,
val_sample_weights=none,
batch_size=none,
epochs=1,
verbose=1,
callbacks=none,
shuffle=true,
initial_epoch=0,
steps_per_epoch=none,
# convert training inputs to an eageriterator
inputs, steps_per_epoch = training_utils.convert_to_iterator(
x=inputs,
y=targets,
sample_weights=sample_weights,
batch_size=batch_size,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
shuffle=shuffle)
# 迭代每個週期
for epoch in range(initial_epoch, epochs):
iterator_fit_loop(
model,
inputs,
class_weight,
steps_per_epoch=steps_per_epoch,
epoch_logs=epoch_logs,
val_inputs=val_inputs,
val_targets=val_targets,
val_sample_weights=val_sample_weights,
epochs=epochs,
verbose=verbose,
callbacks=callbacks,
validation_steps=validation_steps,
do_validation=do_validation,
batch_size=batch_size)
乙個迭代週期
def iterator_fit_loop(model,inputs,class_weight,steps_per_epoch,epoch_logs,val_inputs=none,val_targets=none,val_sample_weights=none,epochs=1,verbose=1,callbacks=none,validation_steps=none,do_validation=false,batch_size=none):
# 在乙個週期中,遍歷訓練 dataset 中的每個樣本,並獲取樣本的特徵 (x) 和標籤 (y)。
for step_index in range(steps_per_epoch):
next_element = inputs.get_next()
x, y, sample_weights = next_element
outs, loss, loss_metrics, masks = _process_single_batch(
model, x, y, sample_weights=sample_weights, training=true)
def _process_single_batch(model, inputs, targets, sample_weights=none, training=false):
outs, loss, loss_metrics, masks = _model_loss(model, inputs, targets, sample_weights=sample_weights, training=training)
grads = tape.gradient(loss, model._collected_trainable_weights)
def _model_loss(model, inputs, targets, sample_weights=none, training=false):
outs = model.call(inputs, **kwargs)
for i, loss_fn in enumerate(model.loss_functions):
weighted_masked_fn = training_utils.weighted_masked_objective(loss_fn)
output_loss = weighted_masked_fn(targets[i], outs[i], weights, mask=mask)
loss_weight = model.loss_weights_list[i]
total_loss += loss_weight * output_loss
return outs, total_loss, loss_metrics, masks
def _eager_metrics_fn(model, outputs, targets, sample_weights=none, masks=none):
metric_results = model._handle_metrics(
outputs, targets=targets, sample_weights=sample_weights, masks=masks)
1.迭代每個週期。通過一次資料集即為乙個週期。
2.在乙個週期中,遍歷訓練 dataset 中的每個樣本,並獲取樣本的特徵 (x) 和標籤 (y)。
for step_index in range(steps_per_epoch):
next_element = inputs.get_next()
x, y, sample_weights = next_element
3.根據樣本的特徵進行**,並比較**結果和標籤。衡量**結果的不準確性,並使用所得的值計算模型的損失和梯度。
outs, loss, loss_metrics, masks = _model_loss(model, inputs, targets, sample_weights=sample_weights, training=training)
grads = tape.gradient(loss, model._collected_trainable_weights)
5.跟蹤一些統計資訊以進行視覺化。
metrics_results = _eager_metrics_fn(
model, outs, y, sample_weights=sample_weights, masks=masks)
6.對每個週期重複執行以上步驟。
TensorFlow訓練Logistic回歸
如下圖,可以清晰看到線性回歸和邏輯回歸的關係,乙個線性方程被邏輯方程歸一化後就成了邏輯回歸。對於二分類,輸出假如線性回歸模型為,則要將z轉成y,即y g z 於是最直接的方式是用單位階躍函式來表示,即 如圖,但階躍函式不連續,於是用sigmoid函式替代之,為 如圖,則有,即logistics函式,...
tensorflow 資料訓練
一 資料訓練遇到問題 excle資料,如何進行訓練?excle資料,如何resize 呢?目前思路 tfrecords 採用 numpy的方法進行處理 學習方法 從檔案中讀取資料 標準化格式tfrecords記錄 二 資料預處理 numpy 不能有中文,要採用decode等方法 不能夠有百分號?目前...
迴圈訓練 抗「疫」居家訓練指南迴圈訓練
為了便於大家居家訓練,在此選擇了迴圈訓練法作為保持體能的針對性方法。一 概念 迴圈訓練法是指根據訓練的具體任務,將練習手段設定為若干個練習站,運動員按照既定順序和路線,依次完成每站練習任務的訓練方法。運用迴圈訓練法可有效地激發訓練情緒,通過交替刺激不同體位累積負荷 痕跡 迴圈訓練法的結構因素有每站的...