有四個人夜間過一座獨木橋,他們只有乙隻手電筒.而這座獨木橋一次最多允許兩人同時通過,而過橋的時候必須持有手電筒,所以就得有人把手電筒帶來帶去.兩人同行時以較慢者的速度為準,四人過橋時間分別是1分、2分、5分和10分.他們四人過完橋最少需要17
分鐘. 2
分析與解答揭秘難題真相,上天天練!
習題「有四個人夜間過一座獨木橋,他們只有乙隻手電筒.而這座獨木橋一次最多允許兩人同時通過,而過橋的時候必須持有手電筒,所以就得有人把手電筒帶來帶去.兩人同行時以較慢者的速度為準,四人過橋時間分別是1分、2分、5分和1...」的分析與解答如下所示:
分析
根據要求出四個人過橋最少時間,即可得出應首先讓用時最少的兩人先過橋,讓他們往返送燈會節省時間,進而分別分析得出即可.
解答
根據要求出四個人過橋最少時間,即可得出應首先讓用時最少的兩人先過橋,讓他們往返送燈會節省時間,
故:(1)1分鐘的和2分鐘的先過橋(此時耗時2分鐘).
(2)1分鐘的回來,(此時共耗時3分鐘).
(3)5分鐘的和10分鐘的過橋(共耗時2+1+10=13分鐘).
(4)2分鐘的回來(共耗時2+1+10+2=15分鐘).
(5)1分鐘的和2分鐘的過橋(共耗時2+1+10+2+2=17分鐘).
此時全部過橋,共耗時17分鐘.
故答案為:17.
點評
此題主要考查了應用類問題,結合實際發現用時最少的兩人先過橋往返送燈會節省時間是解題關鍵.
融會貫通找提分點,上天天練!
與「有四個人夜間過一座獨木橋,他們只有乙隻手電筒.而這座獨木橋一次最多允許兩人同時通過,而過橋的時候必須持有手電筒,所以就得有人把手電筒帶來帶去.兩人同行時以較慢者的速度為準,四人過橋時間分別是1分、2分、5分和1...」相似的題目:
有15枚棋子,甲、乙兩人輪流取,每次只能取1~2枚但不能不取,誰取到最後一枚棋子誰就獲勝.甲怎麼才能獲勝?
看答案
加收藏
盒子裡放著200枚棋子,甲、乙兩人輪流取,甲先乙後,每人每次可取1~3枚,誰取得最後一枚誰獲勝.誰能必勝,請說出必勝的策略.
看答案
加收藏
圖是乙個5×7的方格棋盤,左上角有1枚棋子.甲先乙後,兩人輪流走這枚棋子,每人每次只能向下、向右或向右下走一格,如圖中棋子可以走a、b、c三格之一.誰將棋子走入右下角方格中誰獲勝.如果都按最佳方法走,那麼誰將獲勝?怎樣走?
商場裡買100元的東西會返80元代金元實際折扣是多少?0
相當於100元當成150元用,也就是150元的東西100元就可以買下來了,折扣就是100/150=67%,
應該是100÷(100+50)=0.666666666折海蝕我心
2015-11-07 09:27:06
題目:25匹馬賽跑,每次只能跑5匹馬,最快能賽幾次找出跑得最快的3匹馬?賽跑不能計時,並假設每匹馬的速度是恆定不變的。答案,過程。
我從網上搜到答案,最少7場:
前5次分出五組中每組的排名,第6次為每組第一名比賽,得到25匹中最快的馬,並按5匹馬排名排列分組,得:
a:1,2,3,4,5
b:1,2,3,4,5
c:1,2,3,4,5
d:1,2,3,4,5
e:1,2,3,4,5
a1為最快的馬;
從第6次比賽可排除d、e兩組(d、e中最快的比a1、b1、c1慢,故不可能進前3),同理排除a組的4、5名,b組的3、4、5名,c組的2、3、4、5名,所以參加第7次的只剩下a2、a3、b1、b2、c1
第7次可決出第2、3名
綜上,共需7場比賽
我的解答與原解答有一點關鍵的區別:題設中跑道可以同時讓五匹馬賽跑,換句話說,從出發點只能有五匹馬出發,但是將終點作為新的出發點,即可令十匹馬一起賽跑,這是毫無疑問的,並不影響同時令五匹進行比賽的本質。
q:那麼將這十匹馬作為a組,怎麼決出前三名呢?
a:令兩邊的賽馬同時賽跑,相向而行,左邊五匹馬必定和右邊五匹馬依次相遇在賽道的5*5=25個點,考慮前三次相遇。
顯而易見,首先左邊的第一和右邊的第一會第一次相遇,時間相同的情況下比較路程,此時只要觀察兩匹馬相遇時和原出發點的距離,就能夠知道哪匹馬是這一組中的第一名。
假設左一為a1(a1為最快的馬),那麼右一和左二會第二次相遇,同理可得a2,假設右一為a2,最後左二和右二第三次相遇,同理可得a3.這是因為每次決出第一之後,就不用再管第一了,我所舉的例子裡左二會直接遞補左一的空位,也就是說每次都是左一和右一比較,但現在a1的名額滿了,a2還空著,第二次相遇會佔住a2的名額,第三次佔住a3,依次類推。
第一場取a:a1、a2、a3;
第二場對b組同樣處理,b:b1、b2、b3;
a組、b組與c組共(3+3)+5=6+5=11匹,超過一場比賽的10匹馬上限。
這裡需要一點點小技巧,a組取a1和a2,a3暫不取,將a1、a2、b1、b2、b3與c組五匹馬放在第三場決出前三。
判斷是否需要跑第四場的條件o:當且僅當a1為這24匹馬中第一名,a2為這24匹馬中第二名
時,這時需將少跑一場的a3與第三場中的第三名單獨跑第四場。這是因為25匹馬中第三名有可能在原來第
一、第二名所在組裡。
當然a1、a2剛好是24匹馬中的第一和第二的概率並不是特別高,換句話說我們很有可能跑三場就夠了。
跑第四場的概率勞煩對這個問題有興趣的計算一下。我對這個不是很懂。
怕算錯了,丟臉。。。
答案是7次。
1. 首先將25匹馬分成5組a、b、c、d、e進行比賽。比賽的次數就是5次。得到每組的第一名,分別編號a1,b1,c1,d1,e1。
2. 然後我們將每組的第一名進行比賽,得出結果。假設a1>b1>c1>d1>e1。(大於號表示a1比b1快,1表示第一名)。在這個地方我們可以推斷出,a1是所有馬中最快的,所以它是第一名。d1,e1不可能是前三的馬,同時這兩匹馬所在的組也不可能是前三的馬。所以排除這兩組馬,還剩三組15匹馬。現在需要找出第二快和第三快的馬。
3. 第二名和第三名的馬在剛才的比賽中有以下幾種分布情況:
全部在a組(最快的馬所在的組),那麼它有是a1和a3.
全部在b組,那麼它們就是b1和b2。
一匹在a組一匹在b組,那麼它們是a2和b1.無論是第三名在a組還是第二名在a組都是這兩匹。
一匹在a組一匹在c組,那麼它們是a2和c1。
一匹在b組一匹在c組,那麼它們是b1和c1。
所以我們把a2,a3,b1,b2,c1拿出來再進行一場比賽。取前兩名就是最終的結果。
面試智力題
最近蒐集了一些面試的智力題,特來分享一下,改變下思維方式 1 燒一根不均勻的繩子,從頭燒到尾總共需要1個小時,問如何用燒繩子的方法來確定半小時的時間呢?2 10個海盜搶到了100顆寶石,每一顆都一樣大小且價值連城。他們決定這麼分 1 抽籤決定自己的號碼 1 10 2 首先,由1號提出分配方案,然後大...
面試智力題
題目一 你的面前有30個硬幣,其中有10個正面朝上,20個反面朝上,混亂在一團。要求 現在用厚布遮住你的眼睛。要你把30個硬幣分成2團,每團正面朝上的硬幣個數相等。問 你要怎麼分?不能用手去觸控感覺,也沒有其他人幫忙。題目二 我們用4位二進位制數表示硬幣的狀態。由於最終的結果只要4枚硬幣狀態一樣就行...
面試智力題
乙隻蝸牛從井底爬到井口,每天白天蝸牛要睡覺,晚上才出來活動,乙個晚上蝸牛可以向上爬3尺,但是白天睡覺的時候會往下滑2尺,井深10尺,問蝸牛幾天可以爬出來?5分 8天。前七天是 3 1 7 7 第八天晚上又爬了3尺,這時已經到井口了。在井口睡覺想滑也滑不下去了。有一種細菌,經過一分鐘 為2個,再過一分...