將乙個正整數n分解成幾個正整數相加,可以有多種分解方法,例如7=6+1,7=5+2,7=5+1+1,…。程式設計求出正整數n的所有整數分解式子。
7
7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7
思路:可以用搜尋做,我自己做的時候沒想出很好的搜尋方式,然後上網查了一下,大佬的深搜寫的真是太迷人了。直接每一位累加嘗試,因為要求數字不大,所以不用害怕會爆。最後如果相等則輸出陣列中的結果即可。
#include
#include
using
namespace std;
int a[31]
, sum =
0, top =-1
, cnt =0;
void
dfs(
int i,
int n)
if(n < sum)
return
;//important!!!!!!!
for(
int j = i; j <= n;
++j)
}int
main()
整數分解為若干項之和
將乙個正整數n分解成幾個正整數相加,可以有多種分解方法,例如7 6 1,7 5 2,7 5 1 1,程式設計求出正整數n的所有整數分解式子。輸入格式 每個輸入包含乙個測試用例,即正整數n 0輸出格式 按遞增順序輸出n的所有整數分解式子。遞增順序是指 對於兩個分解序列n 1 和n 2 若存在i使得n ...
整數分解為若干項之和
將乙個正整數n分解成幾個正整數相加,可以有多種分解方法,例如7 6 1,7 5 2,7 5 1 1,程式設計求出正整數n的所有整數分解式子。每個輸入包含乙個測試用例,即正整數n 0 30 按遞增順序輸出n的所有整數分解式子。遞增順序是指 對於兩個分解序列n 1 和n 2 若存在i使得n 1 m 1 ...
整數分解為若干項之和 20 分
將乙個正整數n分解成幾個正整數相加,可以有多種分解方法,例如7 6 1,7 5 2,7 5 1 1,程式設計求出正整數n的所有整數分解式子。每個輸入包含乙個測試用例,即正整數n 0按遞增順序輸出n的所有整數分解式子。遞增順序是指 對於兩個分解序列n 1 和n 2 若存在i使得n 1 m 1 n i ...