樹:乙個擁有n 個節點和n-1 條邊的乙個有向無環圖。
二叉樹:每個節點最多有兩個子樹的樹結構。
滿二叉樹:除最後一層無任何子節點外,每一層上的所有結點都有兩個子結點的二叉樹。
完全二叉樹(由滿二叉樹而引出):二叉樹的深度為h,除第 h 層外,其它各層 (1~h-1) 的結點數都達到最大個數(滿二叉 樹),第 h 層所有的結點都連續集中在最左邊,這就是完全二叉樹。如下圖:
堆:建立在完全二叉樹的基礎上。排序演算法的一種,也是穩定效率最高的一種。
最大(小)堆:(1)根的值大(小)於左右子樹的值 (2)子樹也是最大(小)堆
二叉樹,完全二叉樹,滿二叉樹
二叉樹 是n n 0 個結點的有限集合,它或者是空樹 n 0 或者是由乙個根結點及兩顆互不相交的 分別稱為左子樹和右子樹的二叉樹所組成。滿二叉樹 一顆深度為k且有2 k 1個結點的二叉樹稱為滿二叉樹。說明 除葉子結點外的所有結點均有兩個子結點。所有葉子結點必須在同一層上。完全二叉樹 若設二叉樹的深度...
樹 二叉樹 滿二叉樹 完全二叉樹 完滿二叉樹
目錄名稱作用根 樹的頂端結點 孩子當遠離根 root 的時候,直接連線到另外乙個結點的結點被稱之為孩子 child 雙親相應地,另外乙個結點稱為孩子 child 的雙親 parent 兄弟具有同乙個雙親 parent 的孩子 child 之間互稱為兄弟 sibling 祖先結點的祖先 ancesto...
二叉樹 滿二叉樹和完全二叉樹
二叉樹是一種很重要的非線性資料結構,它是樹結構的一種重要的型別 它不是樹結構的特殊情況 其特徵是每個節點最多有兩個子樹。二叉樹的特點 二叉樹每個結點最多有 2個子結點,樹則無此限制 二叉樹中 結點的子樹 分成左子樹和右子樹,即使某結點只有一棵子樹,也要指明該子樹是左子樹,還是右子樹,就是說 二叉樹是...