乙個數的序列bi,當b1
< ...
< ...
<= n。比如,對於序列(1, 7, 3, 5, 9, 4, 8),有它的一些上公升子串行,如(1, 7), (3, 4, 8)等等。這些子串行中最長的長度是4,比如子串行(1, 3, 5, 8).
你的任務,就是對於給定的序列,求出最長上公升子串行的長度。
輸入輸入的第一行是序列的長度n (1 <= n <= 1000)。第二行給出序列中的n個整數,這些整數的取值範圍都在0到10000。
輸出最長上公升子串行的長度。
樣例輸入
7
1 7 3 5 9 4 8
樣例輸出
4
講解:這個問題可以簡化為求以雖然這個子問題和原問題形式上並不完全一樣,但是只要這n個子問題都解決了,那麼這n個子問題的解中,最大的那個就是整個問題的解。
maxn (k)表示以
#include#include#includeusing namespace std;
int main()
for(int i = 1;i < n; i++)}}
sort(maxn,maxn + n);
cout << maxn[n - 1] << endl;
}
ps:本文講解使用了郭煒老師課件裡的原 動態規劃 最長上公升子串行問題
原文 主題 動態規劃 最長上公升子串行問題,也就是longest increasing subsequence,縮寫為lis。是指在乙個序列中求長度最長的乙個上公升子串行的問題,是動態規劃中乙個相當經典問題。在這裡我們可以看到,這個上公升實質上就是乙個對 進行定義的過程,所以我們求解的其實是一類問題...
動態規劃 最長上公升子串行
問題描述 乙個數的序列bi,當b1 b2 bs的時候,我們稱這個序列是上公升的。對於給定的乙個序列 a1,a2,an 我們可以得到一些上公升的子串行 ai1,ai2,aik 這裡1 i1 i2 ik n。比如,對於序列 1,7,3,5,9,4,8 有它的一些上公升子串行,如 1,7 3,4,8 等等...
動態規劃 最長上公升子串行
動態規劃 儲存遞迴中間結果,減少遞迴次數 總時間限制 2000ms 記憶體限制 65536kb 描述 乙個數的序列 bi,當 b1 b2 bs的時候,我們稱這個序列是上公升的。對於給定的乙個序列 a1,a2 an 我們可以得到一些上公升的子串行 ai1,ai2 aik 這裡1 i1 i2 ik n。...