動態規劃 最長上公升子串行

2021-05-23 15:53:54 字數 906 閱讀 3744

問題描述

乙個數的序列bi,當b1 < b2 < ... < bs的時候,我們稱這個序列是上公升的。對於給定的乙個序列(a1, a2, ..., an),我們可以得到一些上公升的子串行(ai1, ai2, ..., aik),這裡1 <= i1 < i2 < ... < ik <= n。比如,對於序列(1, 7, 3, 5, 9, 4, 8),有它的一些上公升子串行,如(1, 7), (3, 4, 8)等等。這些子串行中最長的長度是4,比如子串行(1, 3, 5, 8).

你的任務,就是對於給定的序列,求出最長上公升子串行的長度。

解題思路

如何把這個問題分解成子問題呢?經過分析,發現 「求以ak(k=1, 2, 3…n)為終點的最長上公升子串行的長度」是個好的子問題――這裡把乙個上公升子串行中最右邊的那個數,稱為該子串行的「終點」。雖然這個子問題和原問題形式上並不完全一樣,但是只要這n個子問題都解決了,那麼這n個子問題的解中,最大的那個就是整個問題的解。

由上所述的子問題只和乙個變數相關,就是數字的位置。因此序列中數的位置k 就是「狀態」,而狀態 k 對應的「值」,就是以ak做為「終點」的最長上公升子串行的長度。這個問題的狀態一共有n個。狀態定義出來後,轉移方程就不難想了。假定maxlen (k)表示以ak做為「終點」的最長上公升子串行的長度,那麼:

maxlen (1) = 1

maxlen (k) = max { maxlen (i):1這個狀態轉移方程的意思就是,maxlen(k)的值,就是在ak左邊,「終點」數值小於ak,且長度最大的那個上公升子串行的長度再加1。因為ak左邊任何「終點」小於ak的子串行,加上ak後就能形成乙個更長的上公升子串行。

實際實現的時候,可以不必編寫遞迴函式,因為從 maxlen(1)就能推算出maxlen(2),有了maxlen(1)和maxlen(2)就能推算出maxlen(3)……

2010-11-22  15:13:57

動態規劃 最長上公升子串行

動態規劃 儲存遞迴中間結果,減少遞迴次數 總時間限制 2000ms 記憶體限制 65536kb 描述 乙個數的序列 bi,當 b1 b2 bs的時候,我們稱這個序列是上公升的。對於給定的乙個序列 a1,a2 an 我們可以得到一些上公升的子串行 ai1,ai2 aik 這裡1 i1 i2 ik n。...

動態規劃 最長上公升子串行

總時間限制 2000ms 記憶體限制 65536kb 描述乙個數的序列bi,當b1 b2 bs的時候,我們稱這個序列是上公升的。對於給定的乙個序列 a1,a2,an 我們可以得到一些上公升的子串行 ai1,ai2,aik 這裡1 i1 i2 ik n。比如,對於序列 1,7,3,5,9,4,8 有它...

動態規劃 最長上公升子串行

描述 乙個數的序列 bi,當 b1 b2 bs的時候,我們稱這個序列是上公升的。對於給定的乙個序列 a1,a2,an 我們可以得到一些上公升的子串行 ai1,ai2 aik 這裡1 i1 i2 ik n。比如,對於序列 1,7,3,5,9,4,8 有它的一些上公升子串行,如 1,7 3,4,8 等等...