數學和軟體 續

2021-08-22 07:39:47 字數 408 閱讀 9100

看來大家對數學還是很有興趣,但我還是很遺憾的看到大多數人對數學和軟體開發的理解還是數學演算法這個層面。

那麼我繼續盡我所能來揭示數學和軟體兩者思考的共通性。

這次考慮的是重構,要點之一是不要重複,因此需要找出幾段**之間的共同點。

從數學角度考察兩個多項式

x^2-5x-6和x^2+4x+3

哪一部分是重複的呢?

從表象上看似乎是x^2,但是深入的考察發現兩者可以被改寫為以下的形式

(x-6)(x+1)和(x+1)(x+3)

那麼x+1也是乙個共同點,而且從數學直觀上來講,x+1是更「簡潔」的共同點。

如何從各類形式上類似甚至形式上不類似的**中發現其「本質」的共同點,是需要一點洞察力的,也可以稱為「嗅覺」。

而代數方面的數學訓練則有助於培養這種「嗅覺」。

數學和軟體

數學和軟體 在我個人的軟體開發過程中,自認為得益於數學基礎訓練較多,但具體有何聯絡,又感覺說不太明白。使用者說 金額大於50萬的合同,需要部門經理審批,金額大於100萬的合同,需要總經理審批。用數學語言表述,可以相當於這樣乙個函式 處理流程 f 合同金額 根據合同金額的差異進行不同的處理 一般情況下...

遺傳演算法解決數學等式(續)

之前的文章 用遺傳演算法解決簡單的數學等式問題 中介紹了過如何使用遺傳演算法解決數學等式問題,即尋找滿足等式 a 2b 3c 4d 30 0 的一組解。適應函式確定後,影響演算法好壞的主要依賴於交叉概率 crossover ratio 變異概率 mutation ratio 初始基因組大小 即用於交...

數學之高精度(續)於2020 7 29

考點 高精度加法 注意輸出格式,輸出錯誤三次 沒好好看題 考點 實數的高精度冪 說真的這有點坑人,因為沒想過寫實數的高精度 你把double放哪兒了 找到的題解裡重新定義了大實數的結構體,現場寫也不是不可以,但是恐怕會花很長很長時間 憑我的編碼水平寫這麼大 量 考點 大數比較 套模板卡了很久!是因為...