線性代數基礎知識note

2021-08-21 20:34:45 字數 405 閱讀 4360

矩陣乘法對應了乙個變換,是把任意乙個向量變成另乙個方向或長度都大多不同的新向量。在這個變換的過程中,原向量主要發生旋轉、伸縮的變化。如果矩陣對某乙個向量或某些向量只發生伸縮變換,不對這些向量產生旋轉的效果,那麼這些向量就稱為這個矩陣的特徵向量,伸縮的比例就是特徵值。

實際上,上述的一段話既講了矩陣變換特徵值及特徵向量的幾何意義(圖形變換)也講了其物理含義。

物理的含義就是運動的圖景:特徵向量在乙個矩陣的作用下作伸縮運動,伸縮的幅度由特徵值確定。特徵值大於1,所有屬於此特徵值的特徵向量身形暴長;

特徵值大於0小於1,特徵向量身形猛縮;

特徵值小於0,特徵向量縮過了界,反方向到0點那邊去了。

數學上,線性變換的特徵向量(本徵向量)是乙個非簡併的向量,其方向在該變換下不變。該向量在此變換下縮放的比例稱為其特徵值(本徵值)。

線性代數基礎知識

1.1 二階行列式 1.2 三階行列式 1.3 排列的逆序數 1.4 n階行列式 2.行列式的性質 行列式與它的轉置行列式相等。性質2 互換行列式的兩行 列 行列式變號。性質3 行列式的某一行 列 中所有的元素都乘以同乙個倍數k,等於用數k乘以此行列式。性質4 行列式中如果有兩行 列 元素成比例,則...

線性代數知識

線性代數,行列式交換任意兩行行列式變號一次,那麼這兩行一定要相鄰嗎?如果是矩陣呢?矩陣用變號嗎,為什麼?行列式行行之間 列列之間交換不必相鄰。矩陣行列互換不用變號,互換後相當於左乘或右乘乙個初等矩陣,不再是原先的矩陣,但是和原先的矩陣相似,擁有相同的特徵值。追問 乘上得這個初等矩陣是?還有乙個,矩陣...

線性代數知識

線性代數,行列式交換任意兩行行列式變號一次,那麼這兩行一定要相鄰嗎?如果是矩陣呢?矩陣用變號嗎,為什麼?行列式行行之間 列列之間交換不必相鄰。矩陣行列互換不用變號,互換後相當於左乘或右乘乙個初等矩陣,不再是原先的矩陣,但是和原先的矩陣相似,擁有相同的特徵值。追問乘上得這個初等矩陣是?還有乙個,矩陣某...