mst(minimum spanning tree,最小生成樹)問題有兩種通用的解法,prim演算法就是其中之一,它是從點的方面考慮構建一顆mst,大致思想是:設圖g頂點集合為u,首先任意選擇圖g中的一點作為起始點a,將該點加入集合v,再從集合u-v中找到另一點b使得點b到v中任意一點的權值最小,此時將b點也加入集合v;以此類推,現在的集合v=,再從集合u-v中找到另一點c使得點c到v中任意一點的權值最小,此時將c點加入集合v,直至所有頂點全部被加入v,此時就構建出了一顆mst。因為有n個頂點,所以該mst就有n-1條邊,每一次向集合v中加入乙個點,就意味著找到一條mst的邊。
用圖示和**說明:
初始狀態:
設定2個資料結構:
lowcost[i]:表示以i為終點的邊的最小權值,當lowcost[i]=0說明以i為終點的邊的最小權值=0,也就是表示i點加入了mst
mst[i]:表示對應lowcost[i]的起點,即說明邊是mst的一條邊,當mst[i]=0表示起點i加入mst
我們假設v1是起始點,進行初始化(*代表無限大,即無通路):
lowcost[2]=6,lowcost[3]=1,lowcost[4]=5,lowcost[5]=*,lowcost[6]=*
mst[2]=1,mst[3]=1,mst[4]=1,mst[5]=1,mst[6]=1,(所有點預設起點是v1)
明顯看出,以v3為終點的邊的權值最小=1,所以邊=1加入mst
此時,因為點v3的加入,需要更新lowcost陣列和mst陣列:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=5,lowcost[5]=6,lowcost[6]=4
mst[2]=3,mst[3]=0,mst[4]=1,mst[5]=3,mst[6]=3
明顯看出,以v6為終點的邊的權值最小=4,所以邊=4加入mst
此時,因為點v6的加入,需要更新lowcost陣列和mst陣列:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=2,lowcost[5]=6,lowcost[6]=0
mst[2]=3,mst[3]=0,mst[4]=6,mst[5]=3,mst[6]=0
明顯看出,以v4為終點的邊的權值最小=2,所以邊=4加入mst
此時,因為點v4的加入,需要更新lowcost陣列和mst陣列:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=0,lowcost[5]=6,lowcost[6]=0
mst[2]=3,mst[3]=0,mst[4]=0,mst[5]=3,mst[6]=0
明顯看出,以v2為終點的邊的權值最小=5,所以邊=5加入mst
此時,因為點v2的加入,需要更新lowcost陣列和mst陣列:
lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=3,lowcost[6]=0
mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=2,mst[6]=0
很明顯,以v5為終點的邊的權值最小=3,所以邊=3加入mst
lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=0,lowcost[6]=0
mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=0,mst[6]=0
至此,mst構建成功,如圖所示:
根據上面的過程,可以容易的寫出具體實現**如下
#includeusing namespace std;
#define max 100
#define maxcost 0x7fffffff
int graph[max][max];
int prim(int graph[max], int n)
//預設起點是1
mst[1] = 0;
for (i = 2; i <= n; i++)
}//找出距離1最近的點
cout << "v" << mst[minid] << "-v" << minid << "=" << min << endl;
sum += min;
lowcost[minid] = 0;
for (j = 2; j <= n; j++)
}//相當於利用mind作為新的起點來更新lowcost;
} return sum;
}int main() }
//構建圖g
for (k = 1; k <= n; k++)
//求解最小生成樹
cost = prim(graph, m);
//輸出最小權值和
cout << "最小權值和=" << cost << endl;
return 0;
}
input:
6 10
1 2 6
1 3 1
1 4 5
2 3 5
2 5 3
3 4 5
3 5 6
3 6 4
4 6 2
5 6 6
output:
v1-v3=1
v3-v6=4
v6-v4=2
v3-v2=5
v2-v5=3
最小權值和=15
Prim演算法 Kruskal演算法
一 prim演算法 1 要求 1 生成一顆連通的樹 2 生成樹 包含全部頂點,v 1條邊,沒有迴路,並且新增一條邊會變成有迴路 3 權重和最小 2 過程模擬 最重要 貪心的思想,每一步都要選擇權值最小的,這棵樹所有跟頂點相連的邊中最小的。從根節點開始,讓樹慢慢的長大。過程 從v1開始 跟v1有聯絡的...
Prim演算法 Kruskal演算法
prim演算法 kruskal演算法 prim演算法和kruskal演算法,都是用來找出圖中最小生成樹的演算法,兩個演算法有些小差別。prim演算法 又稱普里姆演算法,以圖上的頂點為出發點,逐次選擇到最小生成樹頂點集距離最短的頂點為最小生成樹的頂點,並加入到該頂點集,直到包含所有的頂點。1.選擇一出...
Kruskal演算法 Prim演算法
最小生成樹是什麼?自a2392008643的部落格 此演算法可以稱為 加邊法 初始最小生成樹邊數為0,每迭代一次就選擇一條滿足條件的最小代價邊,加入到最小生成樹的邊集合裡。把圖中的所有邊按代價從小到大排序 把圖中的n個頂點看成獨立的n棵樹組成的森林 按權值從小到 擇邊,所選的邊連線的兩個頂點ui,v...