51Nod 1240 莫比烏斯函式

2021-08-06 08:33:56 字數 801 閱讀 7140

則將其默比烏斯反轉公式定義為:

在上面的公式中有乙個函式

(1)若d = 1,那麼![這裡寫描述]( = 1;

(2)若d =p1p2p3...pk,pi均為互異素數,那麼![這裡寫描述]( = (-1)^k

(3)其它情況下 ![這裡寫描述]( = 0

(1)對任意正整數有

(2)對任意正整數有

莫比烏斯函式,由德國數學家和天文學家莫比烏斯提出。梅滕斯(mertens)首先使用μ(n)(miu(n))作為莫比烏斯函式的記號。(據說,高斯(gauss)比莫比烏斯早三十年就曾考慮過這個函式)。

具體定義如下:

如果乙個數包含平方因子,那麼miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。

如果乙個數不包含平方因子,並且有k個不同的質因子,那麼miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。

給出乙個數n, 計算miu(n)。

輸入包括乙個數n,(2 <= n <= 10^9)

輸出miu(n)。

5
-1

51nod 1240 莫比烏斯函式

莫比烏斯函式,由德國數學家和天文學家莫比烏斯提出。梅滕斯 mertens 首先使用 n miu n 作為莫比烏斯函式的記號。據說,高斯 gauss 比莫比烏斯早三十年就曾考慮過這個函式 具體定義如下 如果乙個數包含平方因子,那麼miu n 0。例如 miu 4 miu 12 miu 18 0。如果乙...

51nod 1240 莫比烏斯函式

莫比烏斯函式,由德國數學家和天文學家莫比烏斯提出。梅滕斯 mertens 首先使用 n miu n 作為莫比烏斯函式的記號。據說,高斯 gauss 比莫比烏斯早三十年就曾考慮過這個函式 具體定義如下 如果乙個數包含平方因子,那麼miu n 0。例如 miu 4 miu 12 miu 18 0。如果乙...

莫比烏斯函式(51nod 1240)

思路 分解質因數,每找到乙個質數,判斷是否為質因數,及其對應的次數,一旦出現平方因子,輸出0 如果沒有出現平方因子,原數nu m 除去這個質因數 i 得到商nu m,num i,繼續尋找下乙個質因數,如果尋找的質因數超過了nu m 說明剩餘的數nu m 是乙個質數,則已經找到最後乙個質因數,無需繼續...