設n=(v,)是連通網
1)令最小生成樹的初始狀態為只有n個頂點而無邊的非連通圖t=(v, {}),圖中每個頂點自成乙個連通分量;
2)在e中選擇代價最小的邊,若該邊依附的頂點落在t中不同的連通分量上,則將此邊加入到t中,否則捨去此邊而選擇下一條代價最小的邊;
3)反覆執行第2)步,直至t中所有頂點都在同一連通分量上為止。
則t=(v, )為n的最小生成樹。
#include #include #include #define max 20
using namespace std;
typedef structvexnode;
typedef structedgenode;
int cmp(edgenode a, edgenode b)
void kruskal(edgenode e, int vexnum, int arcnum)
int m1,m2,n1,n2,j,k = 1;
i = 0;
printf("\n*****華麗分割線*****\n");
while(k < vexnum)
} i ++; }
}int main()
sort(e,e+arcnum,cmp);
kruskal(e,vexnum,arcnum);
return 0;
}
克魯斯卡爾演算法
測試輸入包含若干測試用例。每個測試用例的第1行給出評估的道路條數 n 村莊數目m 100 隨後的 n 行對應村莊間道路的成本,每行給出一對正整數,分別是兩個村莊的編號,以及此兩村莊間道路的成本 也是正整數 為簡單起見,村莊從1到m編號。當n為0時,全部輸入結束,相應的結果不要輸出。對每個測試用例,在...
克魯斯卡爾演算法
via 克魯斯卡爾演算法 在連通網中求出最小生成樹 include include define maxedge 20 define maxvex 20 define infinity 65535 typedef struct mgraph typedef struct edge 對邊集陣列edge...
克魯斯卡爾演算法
克魯斯卡爾演算法也是用來尋找乙個圖的最小生成樹的演算法,與prim演算法相同的是,二者都採用由小及大的策略,逐步將整個圖的最小生成樹求出,但二者不同的地方在於prim演算法逐步歸併頂點,而克魯斯卡爾演算法則是逐步歸併邊。演算法思想 設聯通網路n 1 構造乙個只有n個頂點,沒有邊的非連通圖t 每個頂點...