令b[j]表示以位置 j 為終點的所有子區間中和最大的乙個
子問題:如j為終點的最大子區間包含了位置j-1,則以j-1為終點的最大子區間必然包括在其中
如果b[j-1] >0, 那麼顯然b[j] = b[j-1] + a[j],用之前最大的乙個加上a[j]即可,因為a[j]必須包含
如果b[j-1]<=0,那麼b[j] = a[j] ,因為既然最大,前面的負數必然不能使你更大 例項
int max = 0;
int b[n+1];
int start = 0;
int end = 0;
memset(b,0,n+1);
for(int i = 1; i <= n; ++i)
else
if(b[i]>max)
max = b[i];
}
動態規劃法的計算時間複雜度為o(n),是最優的解。做幾道題加深理解
最直白的lis題:
最大子段和公升級版,最大m段和:
最大子段和
設a 是n個整數的序列,稱為該序列的子串行,其中1 i j n.子串行的元素之和稱為a的子段和.例如,a 2,11,4,13,5,2 那麼它的子段和是 長度為1的子段和 2,11,4,13,5,2 長度為2的子段和 9,7,9,8,7 長度為3的子段和 5,20,4,6 長度為4的子段和 18,15...
最大子段和
問題表述 n個數 可能是負數 組成的序列a1,a2,an.求該序列 例如 序列 2,11,4,13,5,2 最大子段和 11 4 13 20。1 窮舉演算法 o n3 o n2 2 分治法 將序列a 1 n 從n 2處截成兩段 a 1 n 2 a n 2 1 n 例項 三 最大子段和 問題表述 n個...
最大子段和
再給頂的n個數的陣列中選出連續的若干個數,使得他們的和是最大的,即最大連續自序列和.列如.序列.1 2 3 1 6 5 9 結果 當取子串行 3,1,6,5,9 結果12 我的思路.1.最大連續子串行的開頭是在1.n之中.的最大連續和 2.求出以i,開頭的最大連續和,此時開頭已經確定了,那麼通過列舉...