度為m的哈夫曼樹

2021-07-07 05:35:08 字數 762 閱讀 1988

若度為m的哈夫曼樹中,其葉結點個數為n,則非葉結點的個數為(  ) 哈夫曼樹不是最優二叉樹,那每個結點度數要麼是0,1或2,那這道題目怎麼會說「度數為m」的哈夫曼樹呢?

首先說明一點,我們平時一般所說的哈夫曼樹是指最優二叉樹,也叫做嚴格二叉樹(注意不是完全二叉樹),但是哈夫曼樹完全不侷限於二叉樹,也存在於多叉樹中,即度為m的哈夫曼樹,也叫最優m叉樹,嚴格m叉樹(注意不是完全m叉樹).

這種最優m叉樹在資料結構中也有應用,比如外部排序中的置換-選擇排序法.這種樹的典型特點是只有度為0和度為m這兩種情況,不存在度大於0,小於m的情況,而我們一般最常接觸的就是給你一組資料,讓你構造最優m叉樹.

但是與最優二叉樹不同的是,給你的一組資料不一定恰好能構造出最優m叉樹,原因是假設度為0的結點個數為x(也就是葉子結點),度為m的結點個數為y,則存在乙個等式x+y=my+1,也就是說x-1能被m-1整除,但是給出你的資料個數(也就是x)不一定能整除啊,怎麼辦呢?

第一,我們要計算(x-1)%(m-1)是否為0,若為0自然好說,直接構造最優m叉樹,若不為0,則需要一些工作了;

第二,假設(x-1)%(m-1)不等於0,怎麼辦呢?需要給這組資料添上一些資料使其能夠整除.添哪些資料呢?又要添幾個呢?為了不影響樹的構造過程,我們只能夠添0,但是添幾個合適呢?根據除數m-1和餘數,我們不難得到,所添0的個數應為除數和餘數的差.這樣我們就能夠保證總能夠構造出最優m叉樹.

第三,接下來就需要根據構造最優二叉樹的方法來構造最優m叉樹,每次選取m個資料,求和後再放入原資料組中(刪除那m個資料),繼續這一步驟,直到只剩乙個資料(根結點).

哈夫曼編碼 哈夫曼樹

1.定義 哈夫曼編碼主要用於資料壓縮。哈夫曼編碼是一種可變長編碼。該編碼將出現頻率高的字元,使用短編碼 將出現頻率低的字元,使用長編碼。變長編碼的主要問題是,必須實現非字首編碼,即在乙個字符集中,任何乙個字元的編碼都不是另乙個字元編碼的字首。如 0 10就是非字首編碼,而0 01不是非字首編碼。2....

哈夫曼樹 哈夫曼編碼

定義從a結點到b結點所經過的分支序列為從a結點到b結點的路徑 定義從a結點到b結點所進過的分支個數為從a結點到b結點的路徑長度 從二叉樹的根結點到二叉樹中所有結點的路徑長度紙盒為該二叉樹的路徑長度 huffman樹 帶權值路徑長度最小的擴充二叉樹應是權值大的外界點舉例根結點最近的擴充二叉樹,該樹即為...

哈夫曼編碼 哈夫曼樹

哈夫曼樹是乙個利用權值進行優化編碼的乙個比較奇怪的樹,他的實現比較簡單,用途也比較單一。哈夫曼樹的實現,實現要求 通過哈夫曼樹可以保證在編碼過程中不會出現例如 1000和100這樣的編碼規則,否則就會編碼失敗,因為1000和100在某些情況下的編碼會一模一樣。通過哈夫曼樹可以保證權值大的值進行編碼時...