傅利葉變換介紹及應用

2021-06-26 22:34:59 字數 1508 閱讀 6553

傅利葉變換(transformée de fourier)在物理學、數論、組合數學、訊號處理、概率論、統計學、密碼學、聲學、光學、海洋學、結構動力學等領域都有著廣泛的應用(例如在訊號處理中,傅利葉變換的典型用途是將訊號分解成幅值分量和頻率分量)。 

傅利葉變換能將滿足一定條件的某個函式表示成三角函式(正弦和/或余弦函式)或者它們的積分的線性組合。在不同的研究領域,傅利葉變換具有多種不同的變體形式,如連續傅利葉變換和離散傅利葉變換。 

傅利葉變換是一種解決問題的方法,一種工具,一種看待問題的角度。理解的關鍵是:乙個連續的訊號可以看作是乙個個小訊號的疊加,從時域疊加與從頻域疊加都可以組成原來的訊號,將訊號這麼分解後有助於處理。 

我們原來對乙個訊號其實是從時間的角度去理解的,不知不覺中,其實是按照時間把訊號進行分割,每一部分只是乙個時間點對應乙個訊號值,乙個訊號是一組這樣的分量的疊加。傅利葉變換後,其實還是個疊加問題,只不過是從頻率的角度去疊加,只不過每個小訊號是乙個時間域上覆蓋整個區間的訊號,但他確有固定的週期,或者說,給了乙個週期,我們就能畫出乙個整個區間上的分訊號,那麼給定一組週期值(或頻率值),我們就可以畫出其對應的曲線,就像給出時域上每一點的訊號值一樣,不過如果訊號是週期的話 ,頻域的更簡單,只需要幾個甚至乙個就可以了,時域則需要整個時間軸上每一點都對映出乙個函式值。 

傅利葉變換就是將乙個訊號的時域表示形式對映到乙個頻域表示形式;逆傅利葉變換恰好相反。這都是乙個訊號的不同表示形式。它的公式會用就可以,當然把證明看懂了更好。   對乙個訊號做傅利葉變換,可以得到其頻域特性,包括幅度和相位兩個方面。幅度是表示這個頻率分量的大小,那麼相位呢,它有什麼物理意義?頻域的相位與時域的相位有關係嗎?訊號前一段的相位(頻域)與後一段的相位的變化是否與訊號的頻率成正比關係。   傅利葉變換就是把乙個訊號,分解成無數的正弦波(或者余弦波)訊號。也就是說,用無數的正弦波,可以合成任何你所需要的訊號。 

想一想這個問題:給你很多正弦訊號,你怎樣才能合成你需要的訊號呢?答案是要兩個條件,乙個是每個正弦波的幅度,另乙個就是每個正弦波之間的相位差。所以現在應該明白了吧,頻域上的相位,就是每個正弦波之間的相位。   

傅利葉變換用於訊號的頻率域分析,一般我們把電訊號描述成時間域的數學模型,而數字訊號處理對訊號的頻率特性更感興趣,而通過傅利葉變換很容易得到訊號的頻率域特性    傅利葉變換簡單通俗理解就是把看似雜亂無章的訊號考慮成由一定振幅、相位、頻率的基本正弦(余弦)訊號組合而成,傅利葉變換的目的就是找出這些基本正弦(余弦)訊號中振幅較大(能量較高)訊號對應的頻率,從而找出雜亂無章的訊號中的主要振動頻率特點。如減速機故障時,通過傅利葉變換做頻譜分析,根據各級齒輪轉速、齒數與雜音頻譜中振幅大的對比,可以快速判斷哪級齒輪損傷。

公式:

則有下圖①式成立。稱為積分運算f(t)的傅利葉變換

②式的積分運算叫做f(ω)的傅利葉逆變換。f(ω)叫做f(t)的像函式,f(t)叫做

f(ω)的像原函式。f(ω)是f(t)的像。f(t)是f(ω)原像。

①傅利葉變換

②傅利葉逆變換

傅利葉變換的應用

傅利葉變換在影象處理中有非常非常的作用。因為不僅傅利葉分析涉及影象處理的很多方面,傅利葉的改進演算法,比如離散余弦變換,gabor與小波在影象處理中也有重要的分量。印象中,傅利葉變換在影象處理以下幾個話題都有重要作用 1.影象增強與影象去噪 絕大部分噪音都是影象的高頻分量,通過低通濾波器來濾除高頻 ...

傅利葉變換的應用

傅利葉變換在影象處理中有非常非常的作用。因為不僅傅利葉分析涉及影象處理的很多方面,傅利葉的改進演算法,比如離散余弦變換,gabor與小波在影象處理中也有重要的分量。印象中,傅利葉變換在影象處理以下幾個話題都有重要作用 1.影象增強與影象去噪 絕大部分噪音都是影象的高頻分量,通過低通濾波器來濾除高頻 ...

傅利葉變換與快速傅利葉變換

作為電子資訊專業的學生老說,這個不知道,或者理解不清楚,是十分不應該的,作為乙個學渣,有時候確實是理解不清楚的 1 首先離散傅利葉變換目的 簡單點說 就是將乙個訊號從時域變換到頻域 標準點說 將以時間為自變數的訊號 與 頻率為自變數的頻譜函式之間的某種關係變換 數學描述 對於 n點序列 其中自然對數...