確定根軌跡與虛軸交點,判斷系統穩定時增益k的取值範圍
**如下
num=[1 2 4];
den1=conv([1 0],[1 4]);den2=conv([1 6],[1 1.4 1]);
den=conv(den1,den2);
w=tf(num,den);
%求根軌跡與虛軸的交點資訊
a=allmargin(w)
%交點增益值
k=a.gainmargin
%交點頻率
wg=a.gmfrequency
rlocus(w)
axis([-8 2 -5 5]);
allmargin產生乙個結構。gainmargin表示增益,gmfrequency表示對應的頻率
a =
gainmargin: [15.6153 67.5209 163.5431]
gmfrequency: [1.2132 2.1510 3.7551]
phasemargin: 77.3823
pmfrequency: 0.1659
delaymargin: 8.1404
dmfrequency: 0.1659
stable: 1
k =15.6153 67.5209 163.5431
wg =
1.2132 2.1510 3.7551
matlab對函式allmargin的解釋
>>help allmargin
allmargin all stability margins and crossover
frequencies.
s = allmargin(sys) provides detailed information
about the gain, phase,
and delay margins and the corresponding c
ross over frequencies of the
siso open-loop model sys.
the output s is a structure with the following
fields:
* gmfrequency: all -180 deg crossover
frequencies in rad/timeunit
(relative to the time units specified in
sys.timeunit, the default
being seconds)
* gainmargin: corresponding gain margins (g.m.
= 1/g where g is the
gain at crossover)
* pmfrequency: all 0 db crossover frequencies (in rad/timeunit)
* phasemargin: corresponding phase margins (in
degrees)
* delaymargin, dmfrequency: delay margins (in
the units specified
in sys.timeunit for continuous-time systems,
and in multiples of
the sample time for discrete-time systems) and
corresponding
critical frequencies
* stable: 1 if nominal closed loop is stable, 0 if
unstable, and nan
if stability cannot be assessed (as in the case of
most frd
systems)
s = allmargin(mag,phase,w,ts) computes the
stability margins from the
frequency response data w, mag, phase and the
sampling time ts. allmargin
expects the magnitude values mag in linear scale
and the phase values phase
in degrees. interpolation is used between
the true stability margins.
系統穩定性測試
簡介 利爾達自主lorawan系統包含lorawan節點 閘道器 ns伺服器三個部分,本次測試針對感測器類終端,定時上報的class a典型應用,驗證系統的工作穩定性。受測產品 節點 lsd4wn 2l817m90 閘道器 lsd4wn 2332xgw1 網路伺服器 lierda 3.0 unico...
系統穩定性判定(頻域)
系統穩定性的簡單理解可以移步 2021 03 09發的博文 一 奈奎斯特穩定性判據 z p 2nz p 2n z p 2n 其中,z為系統閉環傳遞函式右半平面極點數,當z等於0,系統穩定 p為開環傳遞函式右半平面極點個數 n為系統開環奈奎斯特曲線包含 1,j0 的圈數,逆時針為正 改判據可以對映到對...
Android 系統穩定性 ANR(三)
android anr穩定性 android應用程式的所有標準元件全部執行在乙個單一的主線程中,在主線程中所做的任何耗時的操作都有可能造成anr,因為這些耗時的操作會使得主線程沒有機會處理使用者輸入事件或者廣播事件。因此在主線程中執行的任何函式所做的工作都應該盡可能的少,特別是對於activity的...