在hihocoder上面的題目中看到的這個問題,總結一下。先看01揹包問題。
01揹包問題:乙個揹包總容量為v,現在有n個物品,第i個 物品體積為weight[i],價值為value[i],現在往揹包裡面裝東西,怎麼裝能使揹包的內物品價值最大?
看到這個問題,可能會想到貪心演算法,但是貪心其實是不對的。例如最少硬幣找零問題,要用動態規劃。動態規劃思想就是解決子問題並記錄子問題的解,這樣就不用重複解決子問題了。
動態規劃先找出子問題,我們可以這樣考慮:在物品比較少,揹包容量比較小時怎麼解決?用乙個陣列f[i][j]表示,在只有i個物品,容量為j的情況下揹包問題的最優解,那麼當物品種類變大為i+1時,最優解是什麼?第i+1個物品可以選擇放進揹包或者不放進揹包(這也就是0和1),假設放進揹包(前提是放得下),那麼f[i+1][j]=f[i][j-weight[i+1]+value[i+1];如果不放進揹包,那麼f[i+1][j]=f[i][j]。
這就得出了狀態轉移方程:
f[i+1][j]=max(f[i][j],f[i][j-weight[i+1]+value[i+1])。
可以寫出**測試:
#includeusing namespace std;
#define v 1500
unsigned int f[10][v];//全域性變數,自動初始化為0
unsigned int weight[10];
unsigned int value[10];
#define max(x,y) (x)>(y)?(x):(y)
int main()
for (int i=1; i<=n; i++)
for (int j=1; j<=m; j++)
else
f[i][j]=f[i-1][j];
} cout<
再進一步思考,計算f[i][j]時只使用了f[i-1][0……j],沒有使用f[i-1][j+1]這樣的話,我們先計算j的迴圈時,讓j=m……1,只使用乙個一維陣列即可。
for i=1……n
for j=m……1
f[j]=max(f[j],f[j-weight[i]+value[i])
#includeusing namespace std;
#define v 1500
unsigned int f[v];//全域性變數,自動初始化為0
unsigned int weight[10];
unsigned int value[10];
#define max(x,y) (x)>(y)?(x):(y)
int main()
for (int i=1; i<=n; i++)
for (int j=m; j>=1; j--)
} cout《乙個揹包總容量為v,現在有n個物品,第i個 物品體積為weight[i],價值為value[i],每個物品都有無限多件,現在往揹包裡面裝東西,怎麼裝能使揹包的內物品價值最大?
對比一下,看到的區別是,完全揹包問題中,物品有無限多件。往揹包裡面新增物品時,只要當前揹包沒裝滿,可以一直新增。那麼狀態轉移方程為:
f[i+1][j]=max(f[i][j-k*weight[i+1]]+k*value[i+1]),其中0<=k<=v/weight[i+1]
使用記憶體為一維陣列,偽**
for i=1……n
for j=1……m
f[j]=max(f[j],f[j-weight[i]+value[i])
和01揹包問題唯一不同的是j是從1到m。01揹包問題是在前乙個子問題(i-1
種物品)的基礎上來解決當前問題(i
種物品),向i-1種物品時的揹包新增第i種物品;而完全揹包問題是在解決當前問題(i種物品),向i種物品時的揹包新增第i種物品。
**如下:
#includeusing namespace std;
#define v 1500
unsigned int f[v];//全域性變數,自動初始化為0
unsigned int weight[10];
unsigned int value[10];
#define max(x,y) (x)>(y)?(x):(y)
int main()
for (int i=1; i<=n; i++)
for (int j=1; j<=m; j++)
} cout<
01揹包問題和完全揹包問題
時間限制 20000ms 單點時限 1000ms 記憶體限制 256mb 描述且說上一周的故事裡,小hi和小ho費勁心思終於拿到了茫茫多的獎券!而現在,終於到了小ho領取獎勵的時刻了!小ho現在手上有m張獎券,而獎品區有n件獎品,分別標號為1到n,其中第i件獎品需要need i 張獎券進行兌換,同時...
01揹包問題和完全揹包問題
在hihocoder上面的題目中看到的這個問題,總結一下。先看01揹包問題。01揹包問題 乙個揹包總容量為v,現在有n個物品,第i個 物品體積為weight i 價值為value i 現在往揹包裡面裝東西,怎麼裝能使揹包的內物品價值最大?看到這個問題,可能會想到貪心演算法,但是貪心其實是不對的。例如...
01揹包問題和完全揹包問題
01揹包問題,是用來介紹動態規劃演算法最經典的例子,網上關於01揹包問題的講解也很多,我寫這篇文章力爭做到用最簡單的方式,最少的公式把01揹包問題講解透徹。f i,j 表示在前i件物品中選擇若干件放在承重為 j 的揹包中,可以取得的最大價值。pi表示第i件物品的價值。決策 為了揹包中物品總價值最大化...